The purpose of this manuscript is to develop sustained release molecularly imprinted voriconazole (VOR) that were loaded into collagen shield (CS) for ocular treatment of fungal keratitis. Various molecularly imprinted polymer (MIP) formulae were prepared by a precipitation polymerization technique. Different monomers and crosslinkers were tested to obtain better binding capacity. Two promising formulae; (F1: VOR: Acrylamide: ethylene glycol dimethacrylate (EGDMA): benzoyl peroxide (BPO) in the molar ratio of 1:5:15:1.6 mM, respectively) and (F3: VOR: Acrylamide: methyl methacrylic acid (MMA): EGDMA: BPO in the molar ratio 1:2.5:2.5:15:1.6 mM, respectively) were selected according to their binding capacities (82.79% ± 0.86, and 94.90% ± 1.25 respectively), and their release profiles over 48 h in simulated tears fluid (STF) (41.64 ± 1.92, and 85.39 ± 1.64 respectively). Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were carried out. The selected CS (F1 CS and F3 CS) showed sustained release profiles (57.38%± 0.72, and 98.51%±0.49 respectively) over 72 h in STF. Results of trans-corneal permeation and antifungal activity were enhanced for the optimized formula (F3 CS) compared to (F1 CS) and drug solution. Furthermore, in vivo pharmacokinetic studies were conducted showing significant increase in C, delayed T and promoted relative bioavailability. After ocular insertion of F3 CS in male albino rabbits, histopathological studies were attained to assure the safety of the formula. Finally, optimized VOR-MIP-CS could provide promising ocular drug delivery systems (DDS).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2021.06.008 | DOI Listing |
Sci Rep
January 2025
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.
View Article and Find Full Text PDFJ Control Release
January 2025
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Waltham, MA, USA.
Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Center for Applied Geoscience, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany.
Aminopolyphosphonates (APPs) are widely used as chelating agents, and their increasing release into the environment has raised concerns due to their transformation into aminomethylphosphonic acid (AMPA) and glyphosate, compounds of controversial environmental impact. This transformation highlights the urgent need for detailed studies under controlled conditions. Despite the availability of various methods for quantifying individual aminopolyphosphonates and aminomonophosphonates, a green, low-cost approach for the simultaneous quantification of APPs and their transformation products in laboratory experiments has been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!