Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a tissue perfusion imaging technique. Some versatile free-breathing DCE-MRI techniques combining compressed sensing (CS) and parallel imaging with golden-angle radial sampling have been developed to improve motion robustness with high spatial and temporal resolution. These methods have demonstrated good diagnostic performance in clinical setting, but the reconstruction quality will degrade at high acceleration rates and overall reconstruction time remains long. In this paper, we proposed a new parallel CS reconstruction model for DCE-MRI that enforces flexible weighted sparse constraint along both spatial and temporal dimensions. Weights were introduced to flexibly adjust the importance of time and space sparsity, and we derived a fast-thresholding algorithm which was proven to be simple and efficient for solving the proposed reconstruction model. Results on both the brain tumor DCE and liver DCE show that, at relatively high acceleration factor of fast sampling, lowest reconstruction error and highest image structural similarity are obtained by the proposed method. Besides, the proposed method achieves faster reconstruction for liver datasets and better physiological measures are also obtained on tumor images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2021.3091881DOI Listing

Publication Analysis

Top Keywords

dynamic contrast-enhanced
8
spatial temporal
8
high acceleration
8
reconstruction model
8
proposed method
8
reconstruction
7
spatiotemporal flexible
4
flexible sparse
4
sparse reconstruction
4
reconstruction rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!