Background: SARS-CoV-2 is a newly emerged human coronavirus that severely affected human health and the economy. The viral RNA-dependent RNA polymerase (RdRp) is a crucial protein target to stop virus replication. The adenosine derivative, remdesivir, was authorized for emergency use 10 months ago by the United States FDA against COVID-19 despite its doubtful efficacy against SARS-CoV-2.
Methods: A dozen modifications based on remdesivir are tested against SARS-CoV-2 RdRp using combined molecular docking and dynamics simulation in this work.
Results: The results reveal a better binding affinity of 11 modifications compared to remdesivir. Compounds 8, 9, 10, and 11 show the best binding affinities against SARS-CoV-2 RdRp conformations gathered during 100 ns of the Molecular Dynamics Simulation (MDS) run (- 8.13 ± 0.45 kcal/mol, - 8.09 ± 0.67 kcal/mol, - 8.09 ± 0.64 kcal/mol, and - 8.07 ± 0.73 kcal/mol, respectively).
Conclusions: The present study suggests these four compounds as potential SARS-CoV-2 RdRp inhibitors, which need to be validated experimentally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222949 | PMC |
http://dx.doi.org/10.1007/s43440-021-00300-9 | DOI Listing |
Turk J Pharm Sci
January 2025
Fenerbahçe University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Introduction: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), from the family Coronaviridae, is the seventh known coronavirus to infect humans and cause acute respiratory syndrome. Although vaccination efforts have been conducted against this virus, which emerged in Wuhan, China, in December 2019 and has spread rapidly around the world, the lack of an Food and Drug Administration-approved antiviral agent has made drug repurposing an important approach for emergency response during the COVID-19 pandemic. The aim of this study was to investigate the potential of H1-antihistamines as antiviral agents against SARS-CoV-2 RNA-dependent RNA polymerase enzyme.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; Department of Health Sciences, University of York, York, YO10 5DD, UK. Electronic address:
The novel coronavirus disease (COVID-19) pandemic has resulted in 777 million confirmed cases and over 7 million deaths worldwide, with insufficient treatment options. Innumerable efforts are being made around the world for faster identification of therapeutic agents to treat the deadly disease. Post Acute Sequelae of SARS-CoV-2 infection or COVID-19 (PASC), also called Long COVID, is still being understood and lacks treatment options as well.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
Nat Commun
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!