Apurinic/apyrimidinic sites are the most common forms of DNA damage under physiological conditions, yet their structural and dynamical behavior within nucleosome core particles has just begun to be investigated and is dramatically different from that of abasic sites in B-DNA. Clusters of two or more abasic sites are repaired even less efficiently and hence constitute hot spots of high mutagenicity notably due to enhanced double-strand break formation. On the basis of an X-ray structure of a 146 bp DNA wrapped onto a histone core, we investigate the structural behavior of two bistranded abasic sites positioned at mutational hot spots during microsecond-range molecular dynamics simulations. Our simulations allow us to probe interactions of histone tails at clustered abasic site locations, with a definitive assignment of the key residues involved in the NCP-catalyzed formation of DNA-protein cross-linking in line with recent experimental findings, and pave the way for a systematic assessment of the response of histone tails to DNA lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c01058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!