The formation of polycyclic aromatic hydrocarbons (PAHs) during combustion has a substantial impact on environmental pollution and public health. The hydrogen-abstraction-acetylene-addition (HACA) mechanism is expected to be a significant source of larger PAHs containing more than two rings. In this study, the reactions of 1-naphthalenyl and 2-naphthalenyl radicals with acetylene (C2H2) are investigated using VUV photoionization time-of-flight mass spectrometry at 500 to 800 K, 15 to 50 torr, and reaction times up to 10 ms. Our experimental conditions allow us to probe the Bittner-Howard and modified Frenklach HACA routes, but not routes that require multiple radicals to drive the chemistry. The kinetic measurements are compared to a temperature-dependent kinetic model constructed using quantum chemistry calculations and accounting for chemical-activation and fall-off effects. We measure significant quantities of C14H10 (likely phenanthrene and anthracene), as well as 2-ethynylnaphthalene (C12H8), from the reaction of the 2-naphthalenyl radical with C2H2; these results are consistent with the predictions of the kinetic model and the HACA mechanism, but contradict a previous experimental study that indicated no C14H10 formation in the 2-naphthalenyl + C2H2 reaction. In the 1-naphthalenyl radical + C2H2 reaction system, the primary product measured is C12H8, consistent with the predicted formation of acenaphthylene via HACA. The present work provides direct experimental evidence that single-radical HACA can be an important mechanism for the formation of PAHs larger than naphthalene, validating a common assumption in combustion models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01565f | DOI Listing |
Animal
November 2024
College of Animal Science and Technology, Hebei Agricultural University, Hebei, Baoding 071000, China; The Research Center of Cattle and Sheep Embryonic Technique of Hebei Province, Hebei, Baoding, 071000 Baoding, China. Electronic address:
Sheep litter size is a critical trait in mutton production. While litter size regulation in relation to DNA transcription have been rigorously investigated, the function of RNA editing remains less explored. To elucidate the mechanisms controlling sheep fecundity at the RNA editing level and identify pivotal RNA editing sites, this study scrutinised RNA editing sites (RESs) in follicular and luteal phases of ovaries from sheep with high and low fecundity, and the functions of population-specific RESs were subsequently analysed.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, and Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan. Electronic address:
Background: Compound heterozygous variants of SHQ1, an assembly factor of H/ACA ribonucleoproteins (RNPs) involved in critical biological pathways, have been identified in patients with developmental delay, dystonia, epilepsy, and microcephaly. We investigated the role of SHQ1 in brain development and movement disorders.
Methods: SHQ1 expression was knocked down using short-hairpin RNA (shRNA) to investigate its effects on neurons.
Int J Nanomedicine
August 2024
Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
Introduction: Dysregulated calcium homeostasis and consequentially aberrant Ca signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system.
View Article and Find Full Text PDFSci Total Environ
October 2024
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China. Electronic address:
Due to environmental pollution and energy crises, zero‑carbon fuel ammonia (NH) has attracted extensive attention as an alternative fuel for engines. In this paper, the effects of ammonia energy ratio (AER) and injection strategy on particulate emission characteristics of an ammonia diesel dual-fuel engine were examined by merging experimental and simulation results; additionally, soot formation and oxidation mechanism were investigated. Results showed that the reduction in particulate emission was substantially higher than the increase in AER.
View Article and Find Full Text PDFFaraday Discuss
August 2024
Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA.
The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (CH)-a three-ring, 14π benzenoid PAH- a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (CHCC, XA) with benzene (CH) under single collision conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!