Analyzing protein-protein interactions in rare cells using microbead-based single-molecule pulldown assay.

Lab Chip

Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China. and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China and HKUST Shenzhen Research Institute, Hong Kong University of Science and Technology, Hong Kong, China and Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.

Published: August 2021

For studying protein-protein interactions (PPIs) in general, a powerful and commonly used technique is conventional coimmunoprecipitation (co-IP/pulldown) followed by western blotting. However, the technique does not provide precise information regarding the kinetics and stoichiometry of PPIs. Another drawback is that the sensitivity of conventional co-IP is not suitable for examining PPIs in rare cells such as sensory hair cells, circulating tumor cells, embryonic stem cells, and subsets of immune cells. The current single-molecule pulldown (SiMPull) assay can potentially be used for studying PPIs in rare cells but its wide application is hindered by the high technical barrier and time consumption. We report an innovative, agarose microbead-based approach for SiMPull. We used commercially available, pre-surface-functionalized agarose microbeads to capture the protein of interest together with its binding partners specifically from cell extracts and observed these interactions under a microscope at the single-molecule level. Relative to the original method, microbead-based SiMPull is considerably faster, easier to use, and more reproducible and yet provides similar sensitivity and signal-to-background ratio; specifically, with the new method, sample-preparation time is substantially decreased (from ∼10 to ∼3 h). These crucial features should facilitate wide application of the powerful and versatile SiMPull method in common biological and clinical laboratories. Notably, by exploiting the simplicity and ultrahigh sensitivity of microbead-based SiMPull, we used the method in the study of rare auditory hair cells and γδ T cells for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1lc00260kDOI Listing

Publication Analysis

Top Keywords

rare cells
12
cells
9
protein-protein interactions
8
single-molecule pulldown
8
assay studying
8
ppis rare
8
hair cells
8
wide application
8
microbead-based simpull
8
simpull method
8

Similar Publications

Pilomatrix carcinoma (PC) is a rare malignant adnexal tumor originating from follicular matrix cells primarily impacting Caucasian males. This review provides a comprehensive analysis of scientific literature on PC through an exploration of 206 cases reported between 1980 and 2024. We discuss the epidemiology, clinical presentation, histopathology, and diagnostic challenges of PC, and explore various treatment methods for this rare malignancy as well as their associated outcomes.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Intimal Sarcoma of the Lower Pulmonary Vein Diagnosed by Endobronchial Ultrasound-Guided Fine-Needle Aspiration (EBUS-FNA): A Case Report and Comprehensive Literature Review.

Cardiovasc Pathol

January 2025

Section Cytopathology, Institute of Pathology, University Medical Center Hamburg-Eppendorf UKE, D-20246 Hamburg, Germany; Airway Research Center North (ARCN), German Center for Lung Research (DZL), Giessen, Germany.

Intimal sarcoma of blood vessels is a rare, aggressive tumor originating from vascular endothelial cells. This report presents a 22-year-old male diagnosed with an intimal sarcoma of the lower pulmonary vein, detailing diagnosis, treatment, and prognosis information. Additionally, this report explores the application application of Endobronchial Ultrasound-Guided Fine-Needle Aspiration (EBUS-FNA) alongside with Rapid Remote Online Evaluation (ROLE) for identifying a mass-like lesion in the pulmonary vein.

View Article and Find Full Text PDF

Two-photon photosensitizer for specific targeting and induction of tumor pyroptosis to elicit systemic immunity-boosting anti-tumor therapy.

Biomaterials

January 2025

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. Electronic address:

Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!