For studying protein-protein interactions (PPIs) in general, a powerful and commonly used technique is conventional coimmunoprecipitation (co-IP/pulldown) followed by western blotting. However, the technique does not provide precise information regarding the kinetics and stoichiometry of PPIs. Another drawback is that the sensitivity of conventional co-IP is not suitable for examining PPIs in rare cells such as sensory hair cells, circulating tumor cells, embryonic stem cells, and subsets of immune cells. The current single-molecule pulldown (SiMPull) assay can potentially be used for studying PPIs in rare cells but its wide application is hindered by the high technical barrier and time consumption. We report an innovative, agarose microbead-based approach for SiMPull. We used commercially available, pre-surface-functionalized agarose microbeads to capture the protein of interest together with its binding partners specifically from cell extracts and observed these interactions under a microscope at the single-molecule level. Relative to the original method, microbead-based SiMPull is considerably faster, easier to use, and more reproducible and yet provides similar sensitivity and signal-to-background ratio; specifically, with the new method, sample-preparation time is substantially decreased (from ∼10 to ∼3 h). These crucial features should facilitate wide application of the powerful and versatile SiMPull method in common biological and clinical laboratories. Notably, by exploiting the simplicity and ultrahigh sensitivity of microbead-based SiMPull, we used the method in the study of rare auditory hair cells and γδ T cells for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1lc00260k | DOI Listing |
Arch Dermatol Res
January 2025
Premier Dermatology, Ashburn, VA, USA.
Pilomatrix carcinoma (PC) is a rare malignant adnexal tumor originating from follicular matrix cells primarily impacting Caucasian males. This review provides a comprehensive analysis of scientific literature on PC through an exploration of 206 cases reported between 1980 and 2024. We discuss the epidemiology, clinical presentation, histopathology, and diagnostic challenges of PC, and explore various treatment methods for this rare malignancy as well as their associated outcomes.
View Article and Find Full Text PDFBlood Adv
January 2025
The Ohio State University, Columbus, Ohio, United States.
Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.
Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.
View Article and Find Full Text PDFCardiovasc Pathol
January 2025
Section Cytopathology, Institute of Pathology, University Medical Center Hamburg-Eppendorf UKE, D-20246 Hamburg, Germany; Airway Research Center North (ARCN), German Center for Lung Research (DZL), Giessen, Germany.
Intimal sarcoma of blood vessels is a rare, aggressive tumor originating from vascular endothelial cells. This report presents a 22-year-old male diagnosed with an intimal sarcoma of the lower pulmonary vein, detailing diagnosis, treatment, and prognosis information. Additionally, this report explores the application application of Endobronchial Ultrasound-Guided Fine-Needle Aspiration (EBUS-FNA) alongside with Rapid Remote Online Evaluation (ROLE) for identifying a mass-like lesion in the pulmonary vein.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. Electronic address:
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!