AI Article Synopsis

  • Understanding the testing cycle from exposure to test result interpretation is crucial for accurate RT-PCR diagnostics for SARS-CoV-2 in the absence of a gold standard.
  • Bayesian network models help clarify complexities in healthcare, allowing for the construction of a framework that enhances the real-world predictive value of RT-PCR results.
  • Input variables were analyzed through expert collaboration, leading to simulations that showcase how this model can improve understanding of infection status and adapt to various testing scenarios and pathogens.

Article Abstract

In the absence of an established gold standard, an understanding of the testing cycle from individual exposure to test outcome report is required to guide the correct interpretation of severe acute respiratory syndrome-coronavirus-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) results and optimise the testing processes. Bayesian network models have been used within healthcare to bring clarity to complex problems. We use this modelling approach to construct a comprehensive framework for understanding the real-world predictive value of individual RT-PCR results. We elicited knowledge from domain experts to describe the test process through a facilitated group workshop. A preliminary model was derived based on the elicited knowledge, then subsequently refined, parameterised and validated with a second workshop and one-on-one discussions. Causal relationships elicited describe the interactions of pre-testing, specimen collection and laboratory procedures and RT-PCR platform factors, and their impact on the presence and quantity of virus and thus the test result and its interpretation. By setting the input variables as ‘evidence’ for a given subject and preliminary parameterisation, four scenarios were simulated to demonstrate potential uses of the model. The core value of this model is a deep understanding of the total testing cycle, bridging the gap between a person's true infection status and their test outcome. This model can be adapted to different settings, testing modalities and pathogens, adding much needed nuance to the interpretations of results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314199PMC
http://dx.doi.org/10.1017/S0950268821001357DOI Listing

Publication Analysis

Top Keywords

bayesian network
8
testing cycle
8
test outcome
8
elicited knowledge
8
test
5
bridging gaps
4
gaps test
4
test interpretation
4
interpretation sars-cov-2
4
sars-cov-2 bayesian
4

Similar Publications

Background And Objectives: Based on the Adverse Event Reporting System (FAERS) data from the US FDA, this study mined the adverse drug reactions of obeticholic acid (OCA) in the real world and provided reference for clinical safe drug use.

Methods: Adverse event reports for OCA from the second quarter of 2016 to the third quarter of 2023 were extracted. The analysis for adverse reaction signal detection was conducted using reporting odds ratio, proportional reporting ratio, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker methods.

View Article and Find Full Text PDF

Motivation: Genome-wide association studies (GWAS) have identified genetic variants, usually single-nucleotide polymorphisms (SNPs), associated with human traits, including disease and disease risk. These variants (or causal variants in linkage disequilibrium with them) usually affect the regulation or function of a nearby gene. A GWAS locus can span many genes, however, and prioritizing which gene or genes in a locus are most likely to be causal remains a challenge.

View Article and Find Full Text PDF

Fatigue can cause human error, which is the main cause of accidents. In this study, the dynamic fatigue recognition of unmanned electric locomotive operators under high-altitude, cold and low oxygen conditions was studied by combining physiological signals and multi-index information. The characteristic data from the physiological signals (ECG, EMG and EM) of 15 driverless electric locomotive operators were tracked and tested continuously in the field for 2 h, and a dynamic fatigue state evaluation model based on a first-order hidden Markov (HMM) dynamic Bayesian network was established.

View Article and Find Full Text PDF

Artificial Intelligence techniques are being used to analyse vast amounts of medical data and assist in the accurate and early diagnosis of diseases. The common brain related diseases are faced by most of the people which affects the structure and function of the brain. Artificial neural networks have been extensively used for disease prediction and diagnosis due to their ability to learn complex patterns and relationships from large datasets.

View Article and Find Full Text PDF

Functional compensation is a common notion in the neuroscience of healthy ageing, whereby older adults are proposed to recruit additional brain activity to compensate for reduced cognitive function. However, whether this additional brain activity in older participants actually helps their cognitive performance remains debated. We examined brain activity and cognitive performance in a human lifespan sample ( = 223) while they performed a problem-solving task (based on Cattell's test of fluid intelligence) during functional magnetic resonance imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!