Epidemiological studies commonly monitor host population density but rarely account for how transmission dynamics might be influenced by changes in spatial and social organization that arise from high mortality altering population demography. Devil facial tumour disease (DFTD), a novel transmissible cancer, caused almost 100% mortality of its single host, the Tasmanian devil, and a >90% local population decline since its emergence 20 years ago. We compare size and overlap in home ranges in a devil population before and 15 years after disease outbreak. We used location data collected with VHF tracking collars in 2001 and GPS collars in the same area in 2015 and 2016. Density of adult devils, calculated from live trapping data in the same years, show a strong decrease following the disease outbreak. The decline in density was accompanied by a reduction in female home range size, a trend not observed for males. Both spatially explicit population modelling and animal tracking showed a decrease in female home range overlap following the DFTD outbreak. These changes in spatial organisation of the host population have the potential to alter the local transmission dynamic of the tumours. Our results are consistent with the general theory of sex-biased spatial organization mediated by resource availability and highlight the importance of incorporating spatial ecology into epidemiological studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218997 | PMC |
http://dx.doi.org/10.1016/j.gecco.2020.e00993 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!