Background: To date, vascular dementia (VaD) lacks effective treatment in clinical practice. There is also growing evidence that VaD may be closely related to the immune response. The development of high-throughput technology, and the recently discovered group of new mediators called competitive endogenous RNAs (ceRNA), provides a unique opportunity to study the immunomodulation of VaD.

Methods: In this study, we used gene expression profiles in the Gene Expression Omnibus (GEO) database to obtain immune-related gene coexpression modules through a weighted gene coexpression network analysis (WGCNA) and gene enrichment analysis. We extracted and merged long non-coding RNA (lncRNA) and microRNA (miRNA) expressions from the GEO database and mapped them with related databases. Subsequently, we used Cytoscape to construct a lncRNA-miRNA-mRNA network, and then we performed an enrichment analysis on the mRNAs in the network to determine their regulatory function. Subsequently, we used an ImmuCellAI immune infiltration analysis and constructed a ceRNA sub-network of related immune cells. Finally, we conducted a gene set enrichment analysis (GSEA) to determine the potential regulatory pathways of the key factors.

Results: As a result, we identified the blue module as the key module of immunity and constructed the related CeRNA network. Immune infiltration analysis showed that natural killer T (NKT) cells may be the key immune cells of VaD. Using a Pearson correlation analysis, we identified that , , , , , , , and may be the key factors of VaD. Our subsequent GSEA analysis showed that may be regulated by NK cells and toll-like receptors.

Conclusions: Our research provides new therapeutic targets for vascular dementia from the immunological perspective for the first time, including , , , , , , , and , and our research hopes to provide new treatment options for VaD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184445PMC
http://dx.doi.org/10.21037/atm-21-1717DOI Listing

Publication Analysis

Top Keywords

vascular dementia
12
gene coexpression
12
enrichment analysis
12
analysis
9
weighted gene
8
coexpression network
8
network analysis
8
gene expression
8
geo database
8
immune infiltration
8

Similar Publications

Searching for new drugs to treat Alzheimer's disease dementia through multiple pathways.

World J Clin Cases

January 2025

Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

Objective: The 2024 Alzheimer's Association (AA) research diagnostic criteria for Alzheimer's Disease (AD) considers fluid biomarkers, including promising blood-based biomarkers for detecting AD. This study aims to identify dementia subtypes and their cognitive and neuroimaging profiles in older adults with dementia in the Democratic Republic of Congo (DRC) using biomarkers and clinical data.

Methods: Forty-five individuals with dementia over 65 years old were evaluated using the Community Screening Instrument for Dementia and the informant-based Alzheimer's Questionnaire.

View Article and Find Full Text PDF

Background: The long-term impact of opioid use disorder (OUD) on brain health has been little explored although of potentially high public health importance.

Objectives: To investigate the potential causal impact of OUD on later life brain health outcomes, including dementia, stroke and brain structure.

Methods: Observational and Mendelian randomization (MR) analyses were conducted.

View Article and Find Full Text PDF

Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

Biochemistry

January 2025

George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!