In the past, chemically reactive polymeric interfaces have been considered to be of potential interest for developing functional materials for a wide range of practical applications. Furthermore, the rational incorporation of luminescence properties into such chemically reactive interfaces could provide a basis for extending the horizon of their prospective utility. In this report, a simple catalyst-free chemical approach is introduced to develop a chemically reactive and optically active polymeric gel. Branched-polyethyleneimine (BPEI)-derived, inherently luminescent carbon dots (BPEI-CDs) were covalently crosslinked with pentaacrylate (5Acl) through a 1,4-conjugate addition reaction under ambient conditions. The synthesized polymeric gel was milky white under visible light; however, it displayed fluorescence under UV light. Additionally, the residual acrylate groups in the synthesized fluorescent gel allowed its chemical functionality to be tailored through facile, robust 1,4-conjugate addition reactions with primary-amine-containing small molecules under ambient conditions. The chemical reactivity of the luminescent gel was further employed for a proof-of-concept demonstration of portable and parallel 'ON'/'OFF' toxic chemical sensing (namely, the sensing of nitrite ions as a model analyte). First, the chemically reactive luminescent gel derived from BPEI-CDs was covalently post-modified with aniline for the selective synthesis of a diazo compound in the presence of nitrite ions. During this process, the color of the gel under visible light changed from white to yellow and, thus, the colorimetric mode of the sensor was turned 'ON'. In parallel, the luminescence of the gel under UV light was quenched, which was denoted as the 'OFF' mode of the sensor. This parallel and unambiguous 'ON'/'OFF' sensing of a toxic chemical (nitrite ions, with a detection limit of 3 μM) was also achieved even in presence of other relevant interfering ions and at concentrations well below the permissible limit (65 μM) set by the World Health Organization (WHO). Furthermore, this chemically reactive luminescent gel could be of potential interest in a wide range of basic and applied contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179304PMC
http://dx.doi.org/10.1039/d0sc05166gDOI Listing

Publication Analysis

Top Keywords

chemically reactive
24
luminescent gel
16
nitrite ions
12
gel
9
reactive polymeric
8
potential interest
8
wide range
8
polymeric gel
8
bpei-cds covalently
8
14-conjugate addition
8

Similar Publications

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.

View Article and Find Full Text PDF

Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!