Alkali ion intercalation is fundamental to battery technologies for a wide spectrum of potential applications that permeate our modern lifestyle, including portable electronics, electric vehicles, and the electric grid. In spite of its importance, the Nernstian nature of the charge transfer process describing lithiation of carbon has not been described previously. Here we use the ultrathin few-layer graphene (FLG) with micron-sized grains as a powerful platform for exploring intercalation and co-intercalation mechanisms of alkali ions with high versatility. Using voltammetric and chronoamperometric methods and bolstered by density functional theory (DFT) calculations, we show the kinetically facile co-intercalation of Li and K within an ultrathin FLG electrode. While changes in the solution concentration of Li lead to a displacement of the staging voltammetric signature with characteristic slopes 54-58 mV per decade, modification of the K/Li ratio in the electrolyte leads to distinct shifts in the voltammetric peaks for (de)intercalation, with a changing slope as low as 30 mV per decade. Bulk ion diffusion coefficients in the carbon host, as measured using the potentiometric intermittent titration technique (PITT) were similarly sensitive to solution composition. DFT results showed that co-intercalation of Li and K within the same layer in FLG can form thermodynamically favorable systems. Calculated binding energies for co-intercalation systems increased with respect to the area of Li-only domains and decreased with respect to the concentration of -K-Li- phases. While previous studies of co-intercalation on a graphitic anode typically focus on co-intercalation of solvents and one particular alkali ion, this is to the best of our knowledge the first study elucidating the intercalation behavior of two monovalent alkali ions. This study establishes ultrathin graphitic electrodes as an enabling electroanalytical platform to uncover thermodynamic and kinetic processes of ion intercalation with high versatility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179004PMC
http://dx.doi.org/10.1039/d0sc03226cDOI Listing

Publication Analysis

Top Keywords

few-layer graphene
8
alkali ion
8
ion intercalation
8
alkali ions
8
high versatility
8
co-intercalation
7
nernstian intercalation
4
intercalation few-layer
4
graphene determination
4
determination co-intercalation
4

Similar Publications

Article Synopsis
  • Transition metal oxides, like MnO, show great promise as anodes for flexible electrodes but face challenges such as low conductivity and poor cycling performance.
  • A new method called "spontaneous complexation and exfoliation" creates flexible thin-film electrodes using MnO nanocrystals and reduced graphene oxide (rGO), improving their mechanical flexibility and lithium-ion storage capacity.
  • The resulting flexible anodes deliver around 1220 mAh/g over 1000 cycles with high-rate capacity, while maintaining performance even under bending, highlighting their potential for advanced energy storage solutions.
View Article and Find Full Text PDF

Preliminary Study to Investigate Possible Cyto-Genotoxic and Oxidative Effects of Few-Layer Graphene in Human Bronchial Cells.

Int J Mol Sci

December 2024

Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy.

Graphene and its various derivatives, known as graphene-based nanomaterials (GBNs), hold tremendous potential across many fields due to their exceptional properties. As with any novel material, concerns about their safety have emerged alongside their widespread production and use. Several studies have shown that GBNs can have diverse effects on various cell lines and organisms under different exposure conditions.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!