The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances.

J Mech Robot

The Shirley Ryan Ability Lab, 355 E Erie Street, Chicago, IL 60611.

Published: December 2019

The simultaneous control of force and motion is important in everyday activities when humans interact with objects. While many studies have analyzed the control of movement within a perturbing force field, few have investigated its dual aspects of controlling a contact force in nonisometric conditions. The mechanism by which the central nervous system controls forces during movements is still unclear, and it can be elucidated by estimating the mechanical properties of the arm during tasks with concurrent motion and contact force goals. We investigate how arm mechanics change when a force control task is accomplished during low-frequency positional perturbations of the arm. Contrary to many force regulation algorithms implemented in robotics, where contact impedance is decreased to reduce force fluctuations in response to position disturbances, we observed a steady increase of arm endpoint stiffness as the task progressed. Based on this evidence, we propose a theoretical framework suggesting that an internal model of the perturbing trajectory is formed. We observed that force regulation in the presence of predictable positional disturbances is implemented using a position control strategy together with the modulation of the endpoint stiffness magnitude, where the direction of the endpoint stiffness ellipse's major axis is oriented toward the desired force.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208241PMC
http://dx.doi.org/10.1115/1.4044599DOI Listing

Publication Analysis

Top Keywords

contact force
12
endpoint stiffness
12
force
10
motion contact
8
presence predictable
8
force regulation
8
concurrent control
4
control motion
4
contact
4
force presence
4

Similar Publications

Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.

Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.

View Article and Find Full Text PDF

Background And Aims: High contact stresses involving the hip have been shown to increase the risk of developing hip osteoarthritis (OA). Although several risk factors have been identified for OA, a holistic approach to predicting contributed factors toward increased hip contact stresses have not been explored. This study was conducted to comprehensively understand the effects of physical activity on high hip contact stress as predisposing factors of OA.

View Article and Find Full Text PDF

Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.

View Article and Find Full Text PDF

Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.

View Article and Find Full Text PDF

Objectives: To create a validated 3D finite element model and employ it to examine the biomechanical behaviour of multirooted root analogue implants (RAIs).

Methods: A validated finite element model comprising either an RAI or a threaded implant (TI) and an idealised bone block was developed based on a previously conducted in vitro study. All the experimental boundary conditions and material properties were reproduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!