Computational Identification of miRNAs and Temperature-Responsive lncRNAs From Mango ( L.).

Front Genet

State Key Laboratory of Plant Physiology and Biochemistry, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China.

Published: June 2021

Mango is a major tropical fruit in the world and is known as the king of fruits because of its flavor, aroma, taste, and nutritional values. Although various regulatory roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been investigated in many plants, there is yet an absence of such study in mango. This is the first study to provide information on non-coding RNAs (ncRNAs) of mango with the aims of identifying miRNAs and lncRNAs and discovering their potential functions by interaction prediction of the miRNAs, lncRNAs, and their target genes. In this analysis, about a hundred miRNAs and over 7,000 temperature-responsive lncRNAs were identified and the target genes of these ncRNAs were characterized. According to these results, the newly identified mango ncRNAs, like other plant ncRNAs, have a potential role in biological and metabolic pathways including plant growth and developmental process, pathogen defense mechanism, and stress-responsive process. Moreover, mango lncRNAs can target miRNAs to reduce the stability of lncRNAs and can function as molecular decoys or sponges of miRNAs. This paper would provide information about miRNAs and lncRNAs of mango and would help for further investigation of the specific functions of mango ncRNAs through wet lab experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216217PMC
http://dx.doi.org/10.3389/fgene.2021.607248DOI Listing

Publication Analysis

Top Keywords

mirnas lncrnas
12
mirnas
8
lncrnas
8
temperature-responsive lncrnas
8
mango
8
lncrnas mango
8
non-coding rnas
8
lncrnas target
8
target genes
8
mango ncrnas
8

Similar Publications

Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.

View Article and Find Full Text PDF

Introduction: Extensive efforts have been made to explore members of the IL-10 family as potential therapeutic strategies for various diseases; however, their biological role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains underexplored.

Methods: Gene expression datasets GSE136825, GSE179265, and GSE196169 were retrieved from the Gene Expression Omnibus (GEO) for analysis. Candidate genes were identified by intersecting differentially expressed genes (DEGs) between the CRSwNP and control groups (DEGsall) with those between the high- and low-score groups within the CRSwNP cohort (DEGsNP).

View Article and Find Full Text PDF

Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention.

View Article and Find Full Text PDF

The activity of miRNA varies across different cell populations and systems, as part of the mechanisms that distinguish cell types and roles in living organisms and in human health and disease. Typically, miRNA regulation drives changes in the composition and levels of protein-coding RNA and of lncRNA, with targets being down-regulated when miRNAs are active. The term "miRNA activity" is used to refer to this transcriptional effect of miRNAs.

View Article and Find Full Text PDF

Identification of long non-coding RNAs and their multiple regulation mechanism in shell deposition of pearl oyster.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Fishery collage, Guangdong Ocean University, 524088 Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524033, China. Electronic address:

Biomineralization to fabricate diverse morphology shell is typical character of bivalve species and ectopic calcification to form is the production of defense. Long non-coding RNAs (LncRNAs) plays critical roles in multiple cellular biological processes in invertebrate and vertebrate. However, LncRNAs remain poorly understood about expression and regulation roles in bivalve biomineralization studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!