Exposure to Low to Moderate Doses of Ionizing Radiation Induces A Reduction of Pro-Inflammatory Ly6chigh Monocytes and a U-Curved Response of T Cells in APOE -/- Mice.

Dose Response

IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France.

Published: June 2021

Low dose ionizing radiation (LDIR) is known to have a protective effect on atherosclerosis in rodent studies, but how it impacts different cells types involved in lesion formation remains incompletely understood. We investigated the immunomodulatory response of different doses and dose-rates of irradiation in ApoE mice. Mice were exposed to external γ rays at very low (1.4 mGy.h) or low (50 mGy.h) dose-rates, with cumulative doses spanning 50 to 1000 mGy. Flow cytometry of circulating cells revealed a significant decrease in pro-inflammatory Ly6C monocytes at all cumulative doses at low dose-rate, but more disparate effects at very low dose-rate with reductions in Ly6C cells at doses of 50, 100 and 750 mGy only. In contrast, Ly6C monocytes were not affected by LDIR. Similarly, proportions of CD4 T cell subsets in the spleen did not differ between irradiated mice and non-irradiated controls, whether assessing CD25FoxP3 regulatory or CD69 activated lymphocytes. In the aorta, gene expression of cytokines such as IL-1 and TGF-ß and adhesion molecules such as E-Selectin, ICAM-1, and VCAM-1 were reduced at the intermediate dose of 200 mGy. These results suggest that LDIR may reduce atherosclerotic plaque formation by selectively reducing blood pro-inflammatory monocytes and by impairing adhesion molecule expression and inflammatory processes in the vessel wall. In contrast, splenic T lymphocytes were not affected by LDIR. Furthermore, some responses to irradiation were nonlinear; reductions in aortic gene expression were significant at intermediate doses, but not at either highest or lowest doses. This work furthers our understanding of the impact of LDIR with different dose-rates on immune system response in the context of atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191078PMC
http://dx.doi.org/10.1177/15593258211016237DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
8
low mgyh
8
cumulative doses
8
ly6c monocytes
8
low dose-rate
8
gene expression
8
doses
7
low
5
ldir
5
exposure low
4

Similar Publications

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.

View Article and Find Full Text PDF

Spatial unfolding of an extended La-140 source within a 0.5 km-wide exclusion zone using Compton gamma imaging measurements.

J Environ Radioact

January 2025

Canadian Hazards Information Service, Natural Resources Canada, Ottawa, Ontario, Canada.

Results from applying an advanced spatial-unfolding technique to outdoor-trial data acquired with a Silicon photomultiplier-based Compton Telescope for Safety and Security (SCoTSS) gamma imager during perimeter survey of a distributed La-140 source lying within a 500 m x 500 m exclusion zone are presented. A synthetic-data version of the experiment was also modelled using Monte Carlo simulations and reconstructed. For both experimental and synthetic data the method faithfully reproduces the shape of the activity distribution, and for synthetic data the total activity is reproduced as well.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Risk Estimation of Carcinogenic and Noncarcinogenic Diseases from Radiation for Medical X-ray Workers.

Health Phys

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.

The objective of this paper is to construct a follow-up cohort of medical x-ray workers and analyze the risk estimates of radiation-induced carcinogenic and noncarcinogenic diseases induced by chronic low-dose ionizing radiation exposure in the follow-up cohort. A fixed cohort study was used. A total of 159 medical x-ray workers working in radiology departments of hospitals in Gansu Province from 1950 to 1980 were selected as the radiology group, and 149 medical workers in internal medicine, surgery, and other departments who had not engaged in radiology work at the same hospital were selected as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!