Purpose: To investigate the safety and efficacy of green thermal laser as an adjunctive therapy for the treatment of resistant infectious keratitis (IK) in the Delta region of Egypt.
Methods: A retrospective case series of 150 patients, within a 4 year duration, with resistant IK, who failed to respond to specific medical treatment alone for 7 days, were included. They all received green thermal laser photocoagulation treatment to the cornea as an adjunctive to medical treatment.
Results: Forty-eight women and 102 men were included in this study with a mean age of 46.2 ± 7.7 years. Common risk factors associated with IK included trauma by material of plant origin and contact lens wear. The mean duration of healing was 2.87 ± 0.7 weeks. A single session of green thermal laser application was adequate in 138 IK cases (92%), while 12 cases (8%) required an additional session a week later. Supplementary amniotic membrane transplantation (AMT) was required in 26 cases (17.3%). Two patients (1.3%) required tectonic keratoplasty for corneal perforation. The final corrected distance visual acuity (CDVA) was counting fingers (CF) or better in 78 patients (52%). No decrease of CDVA was reported throughout the study.
Conclusion: Green thermal laser is a safe and effective adjunctive therapy for the treatment of resistant infectious keratitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215689 | PMC |
http://dx.doi.org/10.2147/OPTH.S312674 | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, University of Kurdistan P. O. Box 66135-416 Sanandaj Iran +98 873324133 +98 8733624133.
Synthesis of 5-substituted 1-tetrazoles and reduction of a variety of nitro compounds presents a promising solution for the pharmaceutical and agricultural industries. However, the development of green catalysts with superior catalytic performance for this reaction remains a significant challenge. This research introduces a green protocol for the creation of ultrafine Cu(ii) metal immobilized on the surface of pectin hydrogel (HPEC), modified by a CoFeO/Pr-SOH magnetic nanocomposite, enabling the synthesis of tetrazoles and reduction of nitro compounds.
View Article and Find Full Text PDFPublic Health Nurs
January 2025
Three Rivers Department of Rural Health, Charles Sturt University, Wagga Wagga, NSW, Australia.
Background: Rising global temperatures and increased use of personal protective equipment has led to increased risk of heat stress amongst healthcare professionals. This review synthesizes recent research on the impact of heat and heat mitigation strategies on healthcare professionals across disciplines and settings.
Method: Databases were systematically searched using keywords and data from included studies were extracted for content analysis.
Adv Sci (Weinh)
January 2025
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing, 100071, China.
At present, the parameters of the controllers in hot rolling roughing microtension control systems are not adaptively adjustable to variations in working conditions, which compromises both width accuracy and production stability. To address this issue, this paper introduces an ATKB-PID adaptive micro tension control method. This method incorporates a linear attention layer and utilizes a K-Nearest Neighbors (KNN) algorithm to predict the optimal learning rate and inertia coefficient under actual operating conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!