Purpose: To investigate the safety and efficacy of green thermal laser as an adjunctive therapy for the treatment of resistant infectious keratitis (IK) in the Delta region of Egypt.

Methods: A retrospective case series of 150 patients, within a 4 year duration, with resistant IK, who failed to respond to specific medical treatment alone for 7 days, were included. They all received green thermal laser photocoagulation treatment to the cornea as an adjunctive to medical treatment.

Results: Forty-eight women and 102 men were included in this study with a mean age of 46.2 ± 7.7 years. Common risk factors associated with IK included trauma by material of plant origin and contact lens wear. The mean duration of healing was 2.87 ± 0.7 weeks. A single session of green thermal laser application was adequate in 138 IK cases (92%), while 12 cases (8%) required an additional session a week later. Supplementary amniotic membrane transplantation (AMT) was required in 26 cases (17.3%). Two patients (1.3%) required tectonic keratoplasty for corneal perforation. The final corrected distance visual acuity (CDVA) was counting fingers (CF) or better in 78 patients (52%). No decrease of CDVA was reported throughout the study.

Conclusion: Green thermal laser is a safe and effective adjunctive therapy for the treatment of resistant infectious keratitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215689PMC
http://dx.doi.org/10.2147/OPTH.S312674DOI Listing

Publication Analysis

Top Keywords

green thermal
20
thermal laser
20
treatment resistant
12
resistant infectious
12
infectious keratitis
12
laser photocoagulation
8
photocoagulation treatment
8
adjunctive therapy
8
therapy treatment
8
thermal
5

Similar Publications

Synthesis of 5-substituted 1-tetrazoles and reduction of a variety of nitro compounds presents a promising solution for the pharmaceutical and agricultural industries. However, the development of green catalysts with superior catalytic performance for this reaction remains a significant challenge. This research introduces a green protocol for the creation of ultrafine Cu(ii) metal immobilized on the surface of pectin hydrogel (HPEC), modified by a CoFeO/Pr-SOH magnetic nanocomposite, enabling the synthesis of tetrazoles and reduction of nitro compounds.

View Article and Find Full Text PDF

Background: Rising global temperatures and increased use of personal protective equipment has led to increased risk of heat stress amongst healthcare professionals. This review synthesizes recent research on the impact of heat and heat mitigation strategies on healthcare professionals across disciplines and settings.

Method: Databases were systematically searched using keywords and data from included studies were extracted for content analysis.

View Article and Find Full Text PDF

Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.

View Article and Find Full Text PDF

A Robust, Biodegradable, and Fire-Retardant Cellulose Nanofibers-Based Structural Material Fabricated from Natural Sargassum.

Adv Mater

January 2025

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.

View Article and Find Full Text PDF

ATKB-PID: an adaptive control method for micro tension under complex hot rolling conditions.

Sci Rep

January 2025

State Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing, 100071, China.

At present, the parameters of the controllers in hot rolling roughing microtension control systems are not adaptively adjustable to variations in working conditions, which compromises both width accuracy and production stability. To address this issue, this paper introduces an ATKB-PID adaptive micro tension control method. This method incorporates a linear attention layer and utilizes a K-Nearest Neighbors (KNN) algorithm to predict the optimal learning rate and inertia coefficient under actual operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!