Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells, and suggest as a therapeutic target for CSC elimination. TSPYL5 elevation is driven by AKT-dependent TSPYL5 phosphorylation at threonine-120 and stabilization via inhibiting its ubiquitination. TSPYL5-pT120 also induces nuclear translocation and functions as a transcriptional activator of CSC-associated genes, ALDH1 and CD44. Also, nuclear TSPYL5 suppresses the transcription of PTEN, a negative regulator of PI3K signaling. TSPYL5-pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and a positive feedback loop consisting of AKT/TSPYL5/PTEN signaling pathway. Accordingly, elimination of TSPYL5 by inhibiting TSPYL5-pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and TSPYL5-mediated cancer stemness regulation. Our study suggests TSPYL5 be an effective target for therapy-resistant cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222406PMC
http://dx.doi.org/10.1038/s42003-021-02303-xDOI Listing

Publication Analysis

Top Keywords

csc-associated genes
12
lung cancer
8
cancer stem
8
stem cells
8
elimination tspyl5
8
tspyl5
6
cancer
5
targeting therapy-resistant
4
therapy-resistant lung
4
cells disruption
4

Similar Publications

The Peptidoglycan Recognition Protein 1 confers immune evasive properties on pancreatic cancer stem cells.

Gut

August 2024

Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain

Article Synopsis
  • The study focuses on pancreatic ductal adenocarcinoma (PDAC) and how cancer stem cells (CSCs) contribute to its aggressive nature and resistance to therapies, particularly immune checkpoint inhibitors.
  • Researchers used a mouse model and primary tumor cell lines to identify CSC populations and their immune evasion strategies, discovering that the gene peptidoglycan recognition protein 1 (PGLYRP1) is significantly overexpressed in these cells.
  • The findings suggest PGLYRP1 plays a key role in helping CSCs evade immune responses, highlighting its potential as a new target for immunotherapy in PDAC patients.
View Article and Find Full Text PDF

Cancer treatments often become ineffective due to the development of tumor resistance, leading to metastasis and relapse. Treatments may also fail because of their inability to access cells deep within the tumor tissue. When this occurs, new therapeutic agents are needed.

View Article and Find Full Text PDF

Effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells.

Discov Oncol

August 2023

Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.

Background: 3D cancer stem cell (CSC) cultures are widely used as in vitro tumor models. In this study, we determined the effects of enriching HCT116 tumor spheres initially cultured in serum-free medium with different concentrations of serum, focusing on the effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells (CCSCs).

Methods: CCSCs were enriched in standard serum-free medium and serum-free medium with different concentrations of serum for 1 week.

View Article and Find Full Text PDF

Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy.

View Article and Find Full Text PDF

RXR agonist, Bexarotene, effectively reduces drug resistance via regulation of RFX1 in embryonic carcinoma cells.

Biochim Biophys Acta Mol Cell Res

October 2023

Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India. Electronic address:

Aberrant expression of multidrug resistance (MDR) proteins is one of the features of cancer stem cells (CSCs) that make them escape chemotherapy. A well-orchestrated regulation of multiple MDRs by different transcription factors in cancer cells confers this drug resistance. An in silico analysis of the major MDR genes revealed a possible regulation by RFX1 and Nrf2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!