Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222318 | PMC |
http://dx.doi.org/10.1038/s41467-021-23920-4 | DOI Listing |
Biotechnol Adv
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:
Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Food and Drug, University of Parma, 43124 Parma, Italy.
This study presents the development of an analytical characterization strategy tailored to end products derived from an alfalfa ()-based biorefinery with particular emphasis on protein concentrates and phenolic-enriched fractions. Our approach began with a comprehensive full-factorial experimental design aimed at optimizing the extraction process, taking care to design a biocompatible extraction protocol. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques were used to characterize the molecular profile of the extracts.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada. Electronic address:
Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Nanomaterials (Basel)
November 2024
Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa.
This study investigated the optimization of setpoint conditions used for the enhanced biofabrication of silver nanoparticles (H.C-AgNPs) using extracts. A Box-Behnken Design (BBD) model was used to evaluate the effects of reaction time, temperature, an extraction volume, and a 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!