Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)-Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO. In mouse models of progressive osseous heteroplasia (POH), a disease caused by null mutations in , we found that mesenchymal cells secreted SHH, which induced osteoblast differentiation of the surrounding wild-type cells. We further showed that loss of led to activation of YAP transcription activity, which directly drove expression. Secreted SHH further induced YAP activation, expression, and osteoblast differentiation in surrounding wild-type cells. This self-propagating positive feedback loop was both necessary and sufficient for HO expansion and could act independently of in fibrodysplasia ossificans progressiva (FOP), another genetic HO, and nonhereditary HO mouse models. Genetic or pharmacological inhibition of YAP or SHH abolished HO in POH and FOP and acquired HO mouse models without affecting normal bone homeostasis, providing a previously unrecognized therapeutic rationale to prevent, reduce, and shrink HO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638088 | PMC |
http://dx.doi.org/10.1126/scitranslmed.abb2233 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.
Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.
World J Microbiol Biotechnol
January 2025
School of Biotechnology, Dublin City University, Dublin, D9, Ireland.
Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30).
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
Spinal cord injury (SCI) is a severe central nervous system injury without effective therapies. PANoptosis is involved in the development of many diseases, including brain and spinal cord injuries. However, the biological functions and molecular mechanisms of PANoptosis-related genes in spinal cord injury remain unclear.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
Background: 4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent N-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!