Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere.

Sci Adv

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.

Published: June 2021

Atmospheric water vapor is ubiquitous and represents a promising alternative to address global clean water scarcity. Sustainably harvesting this resource requires energy neutrality, continuous production, and facility of use. However, fully passive and uninterrupted 24-hour atmospheric water harvesting remains a challenge. Here, we demonstrate a rationally designed system that synergistically combines radiative shielding and cooling-dissipating the latent heat of condensation radiatively to outer space-with a fully passive superhydrophobic condensate harvester, working with a coalescence-induced water removal mechanism. A rationally designed shield, accounting for the atmospheric radiative heat, facilitates daytime atmospheric water harvesting under solar irradiation at realistic levels of relative humidity. The remarkable cooling power enhancement enables dew mass fluxes up to 50 g m hour, close to the ultimate capabilities of such systems. Our results demonstrate that the yield of related technologies can be at least doubled, while cooling and collection remain passive, thereby substantially advancing the state of the art.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221617PMC
http://dx.doi.org/10.1126/sciadv.abf3978DOI Listing

Publication Analysis

Top Keywords

water harvesting
12
atmospheric water
12
uninterrupted 24-hour
8
fully passive
8
rationally designed
8
water
6
exploiting radiative
4
radiative cooling
4
cooling uninterrupted
4
24-hour water
4

Similar Publications

Lyophilized and Oven-Dried Extracts: Characterization and , , and Analyses.

Plants (Basel)

January 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.

In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.

View Article and Find Full Text PDF

Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO/SiO Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

Polymers (Basel)

January 2025

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.

View Article and Find Full Text PDF

Watercress (), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides.

View Article and Find Full Text PDF

This work describes the synthesis of ordered 3D siloxane-silsesquioxane reticular materials with silicate D4R cubes (SiO), harvested from a sacrificial tetrabutylammonium cyclosilicate hydrate (TBA-CySH) precursor, interlinked with octyl and dicyclopentyl (Cp) hydrocarbon functionalities in a one-step synthesis with organodichlorosilanes. Advanced solid-state NMR spectroscopy allowed us to unravel the molecular order of the nodes and their interconnection by the silicone linkers. In the case of octyl-methyl silicone linkers, changing the silane-to-silicate ratio in the synthesis allowed for tuning the length of the linker between the nodes.

View Article and Find Full Text PDF

Extracting water directly from the atmosphere seems to be a perfect way to solve the water scarcity facing 2 billion people; however, traditional Atmospheric Water Harvesting (AWH) lacks the ability to adsorb water molecules in an arid climate. Porous materials are capable of assisting water adsorption; however, currently, only certain customizable Metal-Organic Frameworks (MOFs) are able to meet the standard of adsorbing water molecules at low humidity and releasing water at low temperatures at certain times that can realize assisted AWH's practical and energy-efficient use (Energy consumption < 5kWh/L-water). From this perspective, we offer a concise review of the advancements in enhanced AWH technologies, delve into the attributes of appropriate MOFs, and offer insights into the potential and future directions of MOFs-AWH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!