Deep learning for semi-automated unidirectional measurement of lung tumor size in CT.

Cancer Imaging

Department of Public Health Sciences, Clemson University, 501 Edwards Hall, Clemson, SC, 29634, USA.

Published: June 2021

Background: Performing Response Evaluation Criteria in Solid Tumor (RECISTS) measurement is a non-trivial task requiring much expertise and time. A deep learning-based algorithm has the potential to assist with rapid and consistent lesion measurement.

Purpose: The aim of this study is to develop and evaluate deep learning (DL) algorithm for semi-automated unidirectional CT measurement of lung lesions.

Methods: This retrospective study included 1617 lung CT images from 8 publicly open datasets. A convolutional neural network was trained using 1373 training and validation images annotated by two radiologists. Performance of the DL algorithm was evaluated 244 test images annotated by one radiologist. DL algorithm's measurement consistency with human radiologist was evaluated using Intraclass Correlation Coefficient (ICC) and Bland-Altman plotting. Bonferroni's method was used to analyze difference in their diagnostic behavior, attributed by tumor characteristics. Statistical significance was set at p < 0.05.

Results: The DL algorithm yielded ICC score of 0.959 with human radiologist. Bland-Altman plotting suggested 240 (98.4 %) measurements realized within the upper and lower limits of agreement (LOA). Some measurements outside the LOA revealed difference in clinical reasoning between DL algorithm and human radiologist. Overall, the algorithm marginally overestimated the size of lesion by 2.97 % compared to human radiologists. Further investigation indicated tumor characteristics may be associated with the DL algorithm's diagnostic behavior of over or underestimating the lesion size compared to human radiologist.

Conclusions: The DL algorithm for unidirectional measurement of lung tumor size demonstrated excellent agreement with human radiologist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220702PMC
http://dx.doi.org/10.1186/s40644-021-00413-7DOI Listing

Publication Analysis

Top Keywords

deep learning
8
semi-automated unidirectional
8
unidirectional measurement
8
measurement lung
8
images annotated
8
learning semi-automated
4
measurement
4
lung tumor
4
tumor size
4
size background
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!