Separation of pollutants from aqueous solution using nanoclay and its nanocomposites: A review.

Chemosphere

School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan. Electronic address:

Published: October 2021

Wastewater is always composed of different pollutants, most of which are toxic to the living being. It is very tough to separate all those diverse groups of contaminants using a single process or single material. Rather a sustainable and environment friendly processes should be adapted to restrict the secondary pollution generation. Nanoclay and its nanocomposites are one of the most used adsorbents that have been modified and used for the separation of almost all types of pollutants, including dyes, heavy metals, fluoride, nitrate, ammonia, emerging pollutants and bacteria. They are relatively inexpensive, easy to exploit and relatively maintenance-free. Thus, recent research bloomed for developing suitable adsorbents, including clay nanocomposites. The advantages and drawbacks of all the clay nanocomposites-based processes have been discussed critically in this article. Nano-clays or other nanoparticles incorporated synthetic and natural polymers-based clay nanocomposites were synthesized, and it was found that they can remove dyes in the range between 48 mg/g and 1994 mg/g. Similarly, they separate a diverse group of heavy metal ions, including As, Cu, Co, Pd, Zn, Cr, Ni, Cd, and Hg, in the range of 0.073-1667 mg/g. The clay nanocomposites also showed fluoride removal efficacy in the range of 0.134-23 mg/g. They are also useful for the separation of emerging pollutants like pesticides, pharmaceuticals, personal care products, trace elements, and particulate matters in the range of 0.1-651 mg/g the clay nanocomposites showed considerable nitrate, ammonia and bacteria removal efficacy too. Though it seems promising, more investigations with real wastewater and pilot-scale studies are recommended to explore large-scale wastewater treatment capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130961DOI Listing

Publication Analysis

Top Keywords

clay nanocomposites
16
nanoclay nanocomposites
8
separate diverse
8
nitrate ammonia
8
emerging pollutants
8
removal efficacy
8
nanocomposites
6
clay
5
separation pollutants
4
pollutants aqueous
4

Similar Publications

Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios.

View Article and Find Full Text PDF

Tissue adhesive hyaluronan-quercetin (Ag)@halloysite-fungal carboxymethyl chitosan nanocomposite hydrogels for wound dressing applications.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea. Electronic address:

This study investigates nanocomposite hydrogels reinforced with hyaluronan-quercetin‑silver nanoparticles intercalated halloysite clay (HAQ-Hal-Ag) for potential application as wound dressings. HAQ-Hal-Ag (at 1, 3, and 5 wt%) was incorporated into a fungal carboxymethyl chitosan (FC)/polyacrylamide (PAM) network (FC-PAM) using methylene bisacrylamide (MBA) as the crosslinker and ammonium persulfate (APS) as the initiator. Various physicochemical analyses were performed to characterize the resulting hydrogels.

View Article and Find Full Text PDF

MARTINI Coarse-Grained Force Field for Thermoplastic Starch Nanocomposites.

J Phys Chem B

November 2024

Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.

Thermoplastic starch (TPS) is an excellent film-forming material, and the addition of fillers, such as tetramethylammonium-montmorillonite (TMA-MMT) clay, has significantly expanded its use in packaging applications. We first used an all-atom (AA) simulation to predict several macroscopic (Young's modulus, glass transition temperature, density) and microscopic (conformation along 1-4 and 1-6 glycosidic linkages, composite morphology) properties of TPS melt and TPS-TMA-MMT composite. The interplay of polymer-surface (weakly repulsive), plasticizer-surface (attractive), and polymer-plasticizer (weakly attractive) interactions leads to conformational and dynamics properties distinct from those in systems with either attractive or repulsive polymer-surface interactions.

View Article and Find Full Text PDF
Article Synopsis
  • A novel bionanocomposite, chitosan-coated activated natural bentonite clay (CCANBC), was developed from waste biomass to effectively remove nickel (Ni) and Eosin Y from wastewater.
  • The bionanosorbents exhibited impressive properties, including high crystallinity and thermal stability, and demonstrated significant adsorption capabilities, achieving 186.42 mg/g for Ni and 238.37 mg/g for Eosin Y, while being thoroughly characterized using various analytical techniques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!