Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection.

Nanotechnology

College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China.

Published: July 2021

Serum creatinine is a key biomarker for the diagnosis and monitoring of kidney disease. Rapid and sensitive creatinine detection is thus important. Here, we propose a high-performance nano-Ag/Au@Au film composite SERS substrate for the rapid detection of creatinine in human serum. Au nanoparticles (AuNPs) and Ag nanoparticles (AgNPs) with uniform particle size were synthesized by a chemical reduction method, and the nano-Ag/Au@Au film composite SERS substrate was successfully prepared via a consecutive layer-on-layer deposition using an optimized liquid-liquid interface self-assembly method. The finite element simulation analysis showed that due to the multi-dimensional plasmonic coupling effect formed between the AuNPs, AgNPs, and the Au film, the intensity of the local electromagnetic field was greatly improved, and a very high enhancement factor (EF) was obtained. Experimental results showed that the limit of detection (LOD) of this composite SERS substrate for rhodamine 6G (R6G) molecules was as low as 1 × 10M, and the Raman EF was 15.7 and 2.9 times that of the AuNP and AgNP monolayer substrates respectively. The results of different batch tests and SERS mapping showed that the relative standard deviations of the Raman intensity of R6G at 612 cmwere 12.5% and 11.7%, respectively. Finally, we used the SERS substrate for the label-free detection of human serum creatinine. The results showed that the LOD of this SERS substrate for serum creatinine was 5 × 10M with a linear correlation coefficient of 0.96. In conclusion, the SERS substrate has high sensitivity, good uniformity, simple preparation, and has important developmental potential for the rapid detection and application of disease biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac0dddDOI Listing

Publication Analysis

Top Keywords

sers substrate
24
composite sers
16
nano-ag/au@au film
12
film composite
12
serum creatinine
12
sers
8
high enhancement
8
enhancement factor
8
creatinine detection
8
rapid detection
8

Similar Publications

SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping.

Biosensors (Basel)

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.

View Article and Find Full Text PDF

Food and agricultural commodities endure consistent contamination by mycotoxins, low molecular weight fungal metabolites, which pose severe health implications to humans together with staggering economic losses. Herein, a ratiometric aptasensor was constructed using silver-coated porous silicon (Ag-pSi) used as an efficient surface-enhanced Raman scattering (SERS) substrate. The bioassay included direct detection of fumonisin B (FB), an abundant and widespread contaminant, by a specific aptamer sequence immobilized on the porous transducer.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!