Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ttbdis.2021.101766 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.
View Article and Find Full Text PDFCell Rep
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:
Epstein-Barr virus (EBV) is an oncogenic virus associated with multiple lymphoid malignancies and autoimmune diseases. During infection in B cells, EBV uses its major glycoprotein gp350 to recognize the host receptor CR2, initiating viral attachment, a process that has lacked direct structural evidence for decades. In this study, we resolved the structure of the gp350-CR2 complex, elucidated their key interactions, and determined the site-specific N-glycosylation map of gp350.
View Article and Find Full Text PDFJ Exp Bot
January 2025
School of Biosciences, University of Birmingham, Birmingham, UK.
Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!