Nuclear receptors are a class of transcriptional factors. Together with their co-regulators, they regulate development, homeostasis, and metabolism in a ligand-dependent manner. Their ability to respond to environmental stimuli rapidly makes them versatile cellular components. Their coordinated activities regulate essential pathways in normal physiology and in disease. Due to their complexity, the challenge remains in understanding their direct associations in cancer development. Basal-like breast cancer is an aggressive form of breast cancer that often lacks ER, PR and Her2. The absence of these receptors limits the treatment for patients to the non-selective cytotoxic and cytostatic drugs. To identify potential drug targets it is essential to identify the most important nuclear receptor association network motifs in Basal-like subtype progression. This research aimed to reveal the transcriptional network patterns, in the hope to capture the underlying molecular state driving Basal-like oncogenesis. In this work, we illustrate a multidisciplinary approach of integrating an unsupervised machine learning clustering method with network modelling to reveal unique transcriptional patterns (network motifs) underlying Basal-like breast cancer. The unsupervised clustering method provides a natural stratification of breast cancer patients, revealing the underlying heterogeneity in Basal-like. Identification of gene correlation networks (GCNs) from Basal-like patients in both the TCGA and METABRIC databases revealed three critical transcriptional regulatory constellations that are enriched in Basal-like. These represent critical NR components implicated in Basal-like breast cancer transcription. This approach is easily adaptable and applicable to reveal critical signalling relationships in other diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221501 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252901 | PLOS |
PLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFBiochem J
January 2025
University of Dundee, Dundee, United Kingdom.
The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.
View Article and Find Full Text PDFSoc Work Health Care
January 2025
German Cancer Society, Berlin, Germany.
Introduction: Outpatient cancer counseling centers (OCCs) are important social work facilities that provide support for cancer survivors who have psychosocial and sociolegal challenges. This paper explores clinical and sociodemographic characteristics, psychosocial burden as well as access routes of clients in OCCs seeking work-related counseling.
Methods: Between May 2022 and December 2023, data were collected in 19 OCCs, using questionnaires and documentation by counselors.
Annu Rev Med
January 2025
Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus and Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; email:
Oral selective estrogen receptor degraders (SERDs) are pure estrogen receptor antagonists that have the potential to overcome common resistance mechanisms to endocrine therapy in estrogen receptor-positive breast cancer. There are currently five oral SERDs in published and ongoing clinical trials-elacestrant, camizestrant, giredestrant, imlunestrant, and amcenestrant-with more in development. They offer a reasonably well-tolerated oral therapy option with low discontinuation rates in studies.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Necmettin Erbakan University, Meram Faculty of Medicine, Department of Medical Oncology, Konya, Turkey.
The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!