A key open issue in condensed-matter physics is how quantum and classical correlations emerge in an unconventional superconductor from the underlying normal state. We study this problem in a doped Mott insulator with information-theory tools on the two-dimensional (2D) Hubbard model at finite temperature with cluster dynamical mean-field theory. We find that the local entropy detects the superconducting state and that the difference in the local entropy between the superconducting and normal states follows the same difference in the potential energy. We find that the thermodynamic entropy is suppressed in the superconducting state and monotonically decreases with decreasing doping. The maximum in entropy found in the normal state above the overdoped region of the superconducting dome is obliterated by superconductivity. The total mutual information, which quantifies quantum and classical correlations, is amplified in the superconducting state of the doped Mott insulator for all doping levels and shows a broad peak versus doping, as a result of competing quantum and classical effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237656 | PMC |
http://dx.doi.org/10.1073/pnas.2104114118 | DOI Listing |
Phys Chem Chem Phys
January 2025
School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
The hydrogenation of bicarbonate, a byproduct of CO captured in alkaline solutions, into formic acid (FA) using glycerol (GLY) as a hydrogen source offers a promising carbon-negative strategy for reducing CO emissions. While Pd-based catalysts are effective in this reaction, they often require high temperatures, leading to low FA yield due to strong hydrogen adsorption on Pd surfaces. In this work, metal-organic framework derived N-doped carbon encapsulated CoNi alloy nanoparticles (CoNi@NC) were prepared, acid-leached, and employed as a support to modulate the electronic structure of Pd-based catalysts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.
Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.
J Phys Condens Matter
January 2025
Department of Physics (MMV), Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (SrLa)IrRuO(= 0.05, 0.15).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!