While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIrZnO perovskite for the OER in acid by employing electrochemical experiments with and characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via X-ray absorption spectroscopy. We discover that the SrIrZnO perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c04332DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
8
evolution reaction
8
future catalyst
8
srirzno perovskite
8
electrochemical cycling
8
material
5
constant change
4
change exploring
4
exploring dynamic
4
dynamic oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!