MicroRNAs (miRNAs) are well-known as powerful regulators of gene expression, with their potential to serve for immunology widely researched in mammals and birds but rarely in fishes. To better understand fish immunology behavior, we herein investigated nine immune-related miRNAs that were reported in other animals, as well as five related cytokine factors and lysozyme (LZM) in the liver, anterior kidney, and spleen of Channel Catfish Ictalurus punctatus after being stimulated by lipopolysaccharides (LPS) and β-glucan. We also predicated the potential targets of these miRNAs via bioinformatics and further investigated nine of them via quantitative real-time PCR. Results showed that expressions of the nine miRNAs were quickly changed in varying extent after stimulation by LPS, especially for miR-122, miR-142a, miR-155, and miR-223, which were significantly changed in spleen, and the same occurred for the LZM and three cytokine factors TNF-α, IFN-γ and TLR2. Compared with LPS, although most of the miRNAs and the cytokine genes were also affected by β-glucan, the extent of the effect was weak. Bioinformatics analysis revealed many immune-related targets of the miRNAs, with some of them reported by previous studies. For the nine investigated target genes, seven targets (77.8%) were significantly upregulated after the stimulation of LPS. It therefore can be inferred that the immune-related miRNAs, LZM, and cytokine factors elicited quick immune responses of Channel Catfish to LPS stimulation as in other animals, but the regulation mechanism of miRNAs might be complex and diverse. This research will contribute to a better understanding will support further immunology research in fishes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/aah.10137 | DOI Listing |
Ann Transl Med
December 2024
Post-Graduation Department, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, Brazil.
Background And Objective: Sarcopenia, characterized by the progressive loss of skeletal muscle mass (MM) and muscle function, is a common and debilitating condition in cancer patients, significantly impacting their quality of life, treatment outcomes, and overall survival. The pathophysiology of sarcopenia is multifactorial, involving metabolic, hormonal, and inflammatory changes. Recent research highlights the role of chronic inflammation in the development and progression of sarcopenia, with pro-inflammatory cytokines being key mediators of muscle catabolism.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Theranostics
January 2025
Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.
View Article and Find Full Text PDFTheranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFMediators Inflamm
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
This study aims to investigate the mechanism of Diels et Gilg flavonoids (THF) on acute hepatic injury (AHI). First, high-performance liquid chromatography (HPLC) fingerprints were established to obtain the main chemical components of THF. According to the network pharmacology databases, collect active targets of AHI and potential targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!