It is well accepted that diesel exhaust particles (DEPs) are highly associated with improper function of organ systems. In this study, DEP toxicity was performed by using in vitro human BEAS-2B cell line and in vivo animal model, namely, Caenorhabditis elegans (C. elegans). The potential toxicity of DEP was assessed by the apical endpoints of BEAS-2B cell line and reflections of C. elegans under exposure scenarios of 0~50 μg mL DEP. With the increase of DEP exposure concentration, microscopic accumulations in the cytoplasm of cell line and intestine of C. elegans were observed. Such invasion of DEP impaired the behaviors of C. elegans as well as its un-exposed offspring and caused significant impeded locomotion. Moreover, the disorders of dopaminergic function were observed simultaneously under DEP exposure, specifically manifested by the decreased transcriptional expression of dat-1. The stress responses instructed by the expression of hsp-16.2 were also increased sharply in TJ375 strain of C. elegans at DEP concentrations of 1 and 10 μg mL. In the case of cellular reactions to DEP exposure, the injuries of membrane integrity and the decreased viability of cell line were simultaneously identified, and reactive oxygen species (ROS), damaged DNA fragment, and upregulated apoptosis were monotonically elevated in cell lines with the increase of DEP concentrations. This study provided a systematic insight into toxicity of DEP both in vivo and vitro, demonstrating that DEP exposure could disturb the stability of cell system and further threat the stability of organism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14908-0DOI Listing

Publication Analysis

Top Keywords

dep exposure
16
beas-2b cell
12
dep
11
diesel exhaust
8
exhaust particles
8
caenorhabditis elegans
8
toxicity dep
8
increase dep
8
dep concentrations
8
cell
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!