A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of the Biodegradation of Aliphatic, Aromatic, and UCM Hydrocarbons from Light Crude Oil in Marine Sediment Using Response Surface Methodology (RSM). | LitMetric

Optimization of the Biodegradation of Aliphatic, Aromatic, and UCM Hydrocarbons from Light Crude Oil in Marine Sediment Using Response Surface Methodology (RSM).

Bull Environ Contam Toxicol

Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida, Mérida, México.

Published: January 2022

This study describes the optimization of the biodegradation of total aliphatic (tAHCs), total aromatic (tPAHs), and unresolved complex mixture (UCM) hydrocarbons from light crude oil in marine sediment. The response surface methodology (RSM), with a Box-Behnken design, was used to optimize the hydrocarbon fraction degradation, reported as degradation efficiency (E (%)), using four independent variables (inoculum, dispersant, light oil concentration, and carbon/nitrogen ratio), all at three levels. Analysis of variance (ANOVA) showed R values of 0.976, 0.974, and 0.975 for tAHCs, tPAHs, and UCM, respectively. All fractions exhibited a statistically significant effect (P < 0.05) in the second-order quadratic regression model for degradation. According to the models, the optimal degradation prediction was: 81.03% for tAHCs, 85.96% for tPAHs, and 92.86% for UCM. This work highlights the possibility of carrying out efficient biodegradation, of more than 80%, through an optimization process using different light oil concentrations, opening up possibilities of multiple response optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-021-03281-wDOI Listing

Publication Analysis

Top Keywords

optimization biodegradation
8
ucm hydrocarbons
8
hydrocarbons light
8
light crude
8
crude oil
8
oil marine
8
marine sediment
8
sediment response
8
response surface
8
surface methodology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!