A lysosome-targeted near-infrared photosensitizer for photodynamic therapy and two-photon fluorescence imaging.

Org Biomol Chem

College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China.

Published: July 2021

Organelle-targeted two-photon near-infrared photosensitizers are highly desirable for photodynamic therapy (PDT) of cancer. Herein, in this contribution, we have developed a 2-dicyanomethylenethiazole-based D-π-A structured near-infrared photosensitizer (TTR). TTR exhibits near-infrared emission (704 nm), a large Stokes shift (200 nm), and smaller ΔE- (the energy gap between S and T) (0.717 eV). In vitro results show that TTR can specifically target lysosomes in living cells for near-infrared fluorescence imaging. With efficient ROS generation, excellent biocompatibility, two-photon imaging capability, and depth imaging (21 μm in vitro and 210 μm in vivo), TTR can effectively kill tumor cells and inhibit the growth of subcutaneous tumors. The hematoxylin-eosin (H&E) staining and blood biochemical parameter results further prove the biocompatibility of TTR. Hence, TTR can be a promising photosensitizer for PDT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ob00684cDOI Listing

Publication Analysis

Top Keywords

near-infrared photosensitizer
8
photodynamic therapy
8
fluorescence imaging
8
ttr ttr
8
ttr
6
lysosome-targeted near-infrared
4
photosensitizer photodynamic
4
therapy two-photon
4
two-photon fluorescence
4
imaging
4

Similar Publications

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death.

Bioact Mater

April 2025

School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Adaptable Blueprint for Non-metal Near-Infrared Organic Photocatalysts by Aromatic Sulfones.

ACS Appl Mater Interfaces

January 2025

Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan.

We present a versatile approach to designing and utilizing high-performance nonmetal near-infrared (NIR) organic photocatalysts based on aromatic sulfones. Current NIR photocatalysts are mainly metal complexes and inorganic materials, while the few reported nonmetal organic NIR photocatalysts primarily use photosensitization to produce active species such as singlet oxygen. Our sulfone-rosamine-based redox photocatalyst demonstrates exceptional capabilities, including high ability for metal-free photo-oxidative bromination, intrinsically oxygen-independent redox reactions, and remarkable photostability with a turnover number (TON) exceeding 2800.

View Article and Find Full Text PDF

Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design π-extension and donor-acceptor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!