Reductive carbonylation of RuCl3·3H2O at CO-atmospheric pressure results in the [H3Ru4(CO)12]- (1) polyhydride carbonyl cluster. The one-pot synthesis involves the following steps: heating RuCl3·3H2O at 80 °C in 2-ethoxyethanol for 2 h, addition of three equivalents of KOH, heating at 135 °C for 2 h, addition of a fourth equivalent of KOH and heating at 135 °C for 1 h. The resulting K[1] salt is transformed into [NEt4][1] upon metathesis with [NEt4]Br in H2O. The IR, 1H and 13C{1H} NMR spectroscopic data are in agreement with those reported in the literature. [Ru8(CO)16(X)4(CO3)4]4- (X = Cl, Br, I; 2-X) is formed as a by-product during the synthesis of 1, and the two compounds are separated on the basis of their different solubilities in organic solvents. The nature of the halide of 2-X depends on the [NEt4]X salt used for metathesis. 2-Br is transformed into [Ru10(CO)20(Br)4(CO3)4]2- (3) upon reaction with an excess of HBF4·Et2O. 1 is readily deprotonated by strong bases affording the previously known [H2Ru4(CO)12]2- (4). The reaction of 1 with [Cu(MeCN)4][BF4] affords [H3Ru4(CO)12(CuMeCN)] (7), whereas [H2Ru4(CO)12(CuBr)2]2- (8) is obtained from the reaction of 4 with [Cu(MeCN)4][BF4]/[NEt4]Br. All the compounds have been spectroscopically characterized, their molecular structures determined by single crystal X-ray diffraction (SC-XRD) and investigated using DFT methods in selected cases in order to confirm the hydride positions and to study the relative stability of possible isomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt01517f | DOI Listing |
Sci Rep
January 2025
Department of Materials Science, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
High-strength carbon fibers were recovered by a new method, involving the decomposition of the thermosetting resin part of carbon fiber-reinforced plastic (CFRP) by heating it in a mixture of sodium hydroxide (NaOH) and potassium hydroxide (KOH). Alkali molten hydroxide was prepared by heating the mixture of NaOH and KOH at various ratios (NaOH: KOH = 1:0, 3:1, 1:1, 1:3, 0:1) at 400C, and the CFRP was then heated with the aforementioned alkali molten hydroxide under a nitrogen atmosphere at 200-400C for 0-90 min. Subsequently, the CFRP was washed with distilled water and filtered to recover the carbon fibers, and its tensile strength was estimated.
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.
In this study, a catalyst with Ni-Mo combination was synthesized using the electric heating/reductive tempering method. Nickel (II) nitrate hexahydrate and ammonium molybdate were combined in a ratio of 1.1 in this approach.
View Article and Find Full Text PDFMar Drugs
October 2024
CFE-Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
Carrageenans are valuable marine polysaccharides derived from specific species of red seaweed (Rhodophyta) widely used as thickening and stabilizing agents across various industries. , predominantly cultivated in tropical countries, is the primary source of kappa-carrageenan. Traditional industrial extraction methods involve alkaline treatment for up to three hours followed by heating, which is inefficient and generates substantial waste.
View Article and Find Full Text PDFLangmuir
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
A coal tar pitch-based porous carbon adsorbent (CPA) was synthesized through a straightforward method involving the heating of a mixture of KOH and coal tar pitch (CTP). This CPA exhibited a high surface area of 1811.2 m g and a large pore volume of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institute of Chemistry, Chemical Technology I, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany.
Earth-abundant transition metal oxides are promising alternatives to precious metal oxides as electrocatalysts for the oxygen evolution reaction (OER) and are intensively investigated for alkaline water electrolysis. OER electrocatalysis, like most other catalytic reactions, is surface-initiated, and the catalyst performance is fundamentally determined by the surface properties. Most transition metal oxide catalysts show OER activities that depend on the predominantly exposed crystal facets/surface structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!