Study Design: In vitro biomechanical study.

Objective: Investigate effects of sacroiliac joint (SIJ) fusion and iliac fixation on distal rod strain in thoracolumbar fusions.

Summary Of Background Data: Instrument failure is a multifactorial, challenging problem frequently encountered by spinal surgeons. Increased rod strain may lead to instrumentation failure and rod fracture.

Methods: Seven fresh frozen human cadaveric specimens (T9-pelvis) used. Six operative constructs tested to investigate changes in rod strain at L5-S1 and S1-Ilium rods, posterior pedicle screws/rods from T10-S1 (PS), PS + bilateral iliac screw fixation, PS + unilateral iliac screw fixation (UIS), PS+UIS+3 unilateral SIJ screws, PS + 3 unilateral SIJ screws, and PS +6 bilateral SIJ screws. Uniaxial strain gauges were used to measure surface strain of rods during flexion-extension.

Results: In flexion-extension, bilateral iliac screws added significant strain to L5-S1 compared with long fusion constructs ending at S1 (PS) (P < 0.05). Unilateral iliac fixation exhibited highest strain to L5-S1 ipsilateral rod, was significantly higher compared with bilateral iliac fixation and PS construct. Unilateral and bilateral SIJ fusion did not significantly change L5-S1 rod strain compared with PS. When measuring S1-Ilium rod strain, unilateral pelvic fixation had highest reported rod strain, approached significance compared with bilateral iliac screws (P = 0.054). Addition of contralateral SIJ fusion did not affect rod strain at S1-ilium on side with unilateral fixation.

Conclusion: Results showed additional fixation below S1 to pelvis added significant rod strain. Unilateral pelvic screws had highest rod strain; SIJ fusion did not affect rod strain. Findings can help guide surgeons when associated risk of rod failure is a consideration.Level of Evidence: N/A.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000003911DOI Listing

Publication Analysis

Top Keywords

rod strain
16
sij screws
12
strain thoracolumbar
8
fusion constructs
8
strain l5-s1
8
bilateral iliac
8
iliac screw
8
screw fixation
8
unilateral sij
8
strain
7

Similar Publications

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil.

Curr Microbiol

December 2024

Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.

During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.

View Article and Find Full Text PDF

Carbapenem-Resistant Adherence to Magnetic Nanoparticles.

Nanomaterials (Basel)

December 2024

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.

Carbapenem-resistant (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

Background: Fervidobacterium is a genus of thermophilic anaerobic Gram-negative rod-shaped bacteria belonging to the phylum Thermotogota. They can grow through fermentation on a wide range of sugars and protein-rich substrates. Some can also break down feather keratin, which has significant biotechnological potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!