Purpose: To investigate the sensitivity of the color vision test by Arden in patients with dysthyroid optic neuropathy (DON) to improve diagnosis.

Methods: In this observational, retrospective study, we included the medical records of 92 eyes (48 patients) with diagnosis of DON between 2008 and 2019 in order to evaluate the full spectrum of findings from the color vision test by Arden, and to determine potential importance of this test. Thirty-five patients were female, and 13 patients were male. The mean age was 58.0 years (range: 34-79) at the time of the DON diagnosis.

Results: Forty-one eyes displayed relatively good BCVA with ≤ 0.2 LogMAR. We found a protan value exceeding the threshold of ≥ 8% in 57 eyes (30 patients) at the time of the diagnosis. The sensitivity of protan was 61.9% (95% CI 51.2-71.8%), while that of tritan was a striking 98.9% (95% CI 94.1-99.9%). We discovered one pathological sign, tritan deficiency (based on a threshold of ≥ 8%) consistently in all eyes but one at the time of the diagnosis, regardless of the visual field defects or any changes in best-corrected visual acuity (BCVA).

Conclusion: We found blue-yellow (tritan) deficiency, to be a sensitive and reliable indicator of dysthyroid optic neuropathy. We conclude that, in cases with suspected DON, a color vision test that can detect tritan deficiency is an essential tool for the adequate assessment, diagnosis, and treatment of DON.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523501PMC
http://dx.doi.org/10.1007/s00417-021-05227-8DOI Listing

Publication Analysis

Top Keywords

color vision
16
dysthyroid optic
12
optic neuropathy
12
vision test
12
tritan deficiency
12
indicator dysthyroid
8
test arden
8
eyes patients
8
threshold of ≥ 8%
8
time diagnosis
8

Similar Publications

Purpose: This study presents a novel randomized controlled trial investigating photobiomodulation (PBM) therapy as an intervention method for color vision deficiency (CVD).

Methods: A total of 74 participants with CVD were assigned to either the PBM group or the control group. In the PBM group, participants wore virtual reality (VR) goggles twice daily, with a 12-h interval, over a four-week period.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

Ubiquitous white light-emitting diodes (LEDs) possess optical properties that differ from those of natural light. This difference can impact visual perception and biological functions, thus potentially affecting eye health. Myopia, which leads to visual impairments and potentially irreversible vision loss or blindness, is the most prevalent refractive error worldwide.

View Article and Find Full Text PDF

Nocturnal and crepuscular fast-eyed insects often exploit multiple optical channels and temporal summation for fast and low-light imaging. Here, we report high-speed and high-sensitive microlens array camera (HS-MAC), inspired by multiple optical channels and temporal summation for insect vision. HS-MAC features cross-talk-free offset microlens arrays on a single rolling shutter CMOS image sensor and performs high-speed and high-sensitivity imaging by using channel fragmentation, temporal summation, and compressive frame reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!