Background: Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear.
Objectives: We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term.
Methods: Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured.
Results: Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05).
Conclusions: The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417931 | PMC |
http://dx.doi.org/10.1093/jn/nxab190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!