Background & Aims: Current standard-of-care suppresses HBV replication, but does not lead to a functional cure. Treatment aiming to cure chronic hepatitis B (CHB) is believed to require the induction of strong cellular immune responses, such as by therapeutic vaccination.
Methods: We designed a therapeutic HBV vaccine candidate (YF17D/HBc-C) using yellow fever vaccine YF17D as a live-attenuated vector to express HBV core antigen (HBc). Its ability to induce potent cellular immune responses was assessed in a mouse model that supports flavivirus replication.
Results: Following a HBc protein prime, a booster of YF17D/HBc-C was found to induce vigorous cytotoxic T cell responses. In a direct head-to-head comparison, these HBc-specific responses exceeded those elicited by adenovirus-vectored HBc. Target-specific T cells were not only more abundant, but also showed a higher degree of polyfunctionality, with HBc-specific CD8 T cells producing interferon γ and tumour necrosis factor α in addition to granzyme B. This immune phenotype translated into a superior cytotoxic effector activity toward HBc-positive cells in YF17D/HBc-C vaccinated animals .
Conclusions: The results presented here show the potential of YF17D/HBc-C as a vaccine candidate to treat CHB, and warrant follow-up studies in preclinical animal models of HBV persistence in which other candidate vaccines have been unable to achieve a sustained virologic response.
Lay Summary: Resolution of CHB requires the induction of strong cellular immune responses. We used the yellow fever vaccine as a vector for HBV antigens and show that it is capable of inducing high levels of HBV-specific T cells that produce multiple cytokines simultaneously and are cytotoxic .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203848 | PMC |
http://dx.doi.org/10.1016/j.jhepr.2021.100295 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFMol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.
The induction of apoptosis in tumor cells is a common target for the development of anti-tumor therapies; however, these therapies still leave patients at increased risk of disease recurrence. For example, apoptotic tumor cells can promote tumor growth and immune evasion via the secretion of metabolites, apoptotic extracellular vesicles, and induction of pro-tumorigenic macrophages. This paradox of apoptosis induction and the pro-tumorigenic effects of tumor cell apoptosis has begged the question of whether apoptosis is a suitable cancer therapy, and led to further explorations into other immunogenic cell death-based approaches.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Gynecology, Lanzhou University Second Hospital Lanzhou University, Lanzhou, 730030, China.
Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes.
View Article and Find Full Text PDFBackground: The limited efficacy of the two recently approved malaria vaccines, RTS,S/AS01 and R21/Matrix- M™, highlights the need for alternative vaccine candidate genes. Plasmodium falciparum Reticulocyte Binding Protein Homologue 5 (Pfrh5) is a promising malaria vaccine candidate, given its limited polymorphism, its essential role in parasite survival, a lack of immune selection pressure and higher efficacy against multiple parasites strains. This study evaluated the genetic diversity of Pfrh5 gene among parasites from regions with varying malaria transmission intensities in Mainland Tanzania, to generate baseline data for this potential malaria vaccine candidate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!