We conducted the present study to design and manufacture a semi-transparent organic solar cell (ST-OSC). First, we formed a transparent top contact as MoO/Ag/MoO in a dielectric/metal/dielectric (DMD) structure. We performed the production of an FTO/ZnO/P3HT:PCBM/MoO/Ag/MoO ST-OSC by integrating MoO/Ag/MoO (10/[Formula: see text]/[Formula: see text] nm) instead of an Ag electrode in an opaque FTO/ZnO/P3HT:PCBM/MoO/Ag (-/40/130/10/100 nm) OSC, after theoretically achieving optimal values of optical and electrical parameters depending on Ag layer thickness. The transparency decreased with the increase of [Formula: see text] values for current DMD. Meanwhile, maximum transmittance and average visible transmittance (AVT) indicated the maximum values of over 92% for [Formula: see text] = 4 and 8 nm, respectively. For ST-OSCs, the absorption and reflectance increased in the visible region by a wavelength of longer than 560 nm and in the whole near-infrared region by increasing [Formula: see text] up to 16 nm. Moreover, in the CIE chromaticity diagram, we reported a shift towards the D65 Planckian locus for colour coordinates of current ST-OSCs. Electrical analysis indicated the photogenerated current density and AVT values for [Formula: see text] nm as 63.30 mA/cm and 38.52%, respectively. Thus, the theoretical and experimental comparison of optical and electrical characteristics confirmed that the manufactured structure is potentially conducive for a high-performance ST-OSC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219690 | PMC |
http://dx.doi.org/10.1038/s41598-021-92539-8 | DOI Listing |
PLoS One
January 2025
Department of Radiology, Yantaishan Hospital, Yantai, Shandong, China.
Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and therapy. Currently, these duties are extensively carried out by manual examination utilizing the human visual system.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A three-dimensional (3D) waveguide model is applied in extreme ultraviolet (EUV) lithography simulations. The 3D waveguide model is equivalent to rigorous coupled-wave analysis, but fewer field components are used to solve Maxwell's equations. The 3D waveguide model uses two components of vector potential, and , corresponding to the two polarizations.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light-material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!