Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis.

Nat Commun

Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.

Published: June 2021

Sexual reproduction constrains progeny to inherit allelic genes from both parents. Selective acquisition of target genes from only one parent in the F1 generation of plants has many potential applications including the elimination of undesired alleles and acceleration of trait stacking. CRISPR/Cas9-based gene drives can generate biased transmission of a preferred allele and convert heterozygotes to homozygotes in insects and mice, but similar strategies have not been implementable in plants because of a lack of efficient homology-directed repair (HDR). Here, we place a gene drive, which consists of cassettes that produce Cas9, guide RNAs (gRNA), and fluorescent markers, into the CRYPTOCHROME 1 (CRY1) gene through CRISPR/Cas9-mediated HDR, resulting in cry1 lines. After crossing the cry1/cry1 lines to wild type, we observe F1 plants which have DNA at the CRY1 locus from only the cry1/cry1 parent. Moreover, a non-autonomous trans-acting gene drive, in which the gene drive unit and the target gene are located on different chromosomes, converts a heterozygous mutation in the target gene to homozygous. Our results demonstrate that homozygous F1 plants can be obtained through zygotic conversion using a CRISPR/Cas9-based gene drive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219824PMC
http://dx.doi.org/10.1038/s41467-021-24195-5DOI Listing

Publication Analysis

Top Keywords

gene drive
16
target genes
8
genes parent
8
gene
8
crispr/cas9-based gene
8
target gene
8
selective inheritance
4
target
4
inheritance target
4
parent sexually
4

Similar Publications

The catching-by-polymerization (CBP) oligodeoxynucleotide (oligo or ODN) purification method has been demonstrated suitable for large-scale, parallel, and long oligo purification. The authenticity of the oligos has been verified via DNA sequencing, and gene construction and expression. A remaining obstacle to the practical utility of the CBP method is affordable polymerizable tagging phosphoramidites (PTPs) that are needed for the method.

View Article and Find Full Text PDF

Unlabelled: RNA-driven protein aggregation leads to cellular dysregulation by sequestering regulatory proteins, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar-associated RNA and human satellite II (HSATII) repeat RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells.

View Article and Find Full Text PDF

Within cells multiple related transcription factors targeting the same sequences may co-exist, leading to potential regulatory cooperativity, redundancy or competition. Yet the differential roles and biological functions of co-targeting transcription factors is poorly understood. In melanoma, three highly-related transcription factors are co-expressed: The mTORC1-regulated TFEB and TFE3, that are key effectors of a wide range of metabolic and microenvironmental cues; and MITF, that controls melanoma phenotypic identity.

View Article and Find Full Text PDF

Structural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!