This study examined the effect of a cryoprotectant with and without pentoxifylline supplementation on the motility and viability of human testicular sperm, both before and after freezing. Testicular samples were obtained from 68 patients with azoospermia who came to the Andrology Service of West China Second University Hospital, Sichuan University, for testicular biopsies from December 2019 to April 2020. All patients were assigned randomly to two groups: experimental, whose testicular sperm were added to the cryoprotectant with pentoxifylline, and the control, whose testicular sperm were added to the cryoprotectant without pentoxifylline. Both groups used the same freezing and thawing methods. Testicular sperm motility in the experimental group was significantly higher than that of the control group, both before and after cryopreservation. The recovery rate of sperm motility in the experimental group was significantly higher than that of the control group. The percentage of samples with motile testicular sperm in the experimental group was significantly higher than that of the control group after thawing. Sperm viability was unchanged between the experimental and control groups, both before and after freezing. Overall, a pentoxifylline-supplemented cryoprotectant can significantly improve the motility of testicular sperm before and after cryopreservation.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0967199421000368DOI Listing

Publication Analysis

Top Keywords

testicular sperm
28
cryoprotectant pentoxifylline
12
experimental group
12
group higher
12
higher control
12
control group
12
testicular
9
sperm
9
human testicular
8
sperm cryoprotectant
8

Similar Publications

Research progress on Sertoli cell secretion during spermatogenesis.

Front Endocrinol (Lausanne)

January 2025

Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

The quality and quantity of stripped and testicular wild northern pike (Esox lucius) sperm was compared and the effectiveness of short-term storage was assessed. Stripped sperm (SS) was collected using abdominal massage. Next, the fish were decapitated and the testes were removed.

View Article and Find Full Text PDF

Hormonal Regulation of Urokinase- and Tissue-Type Plasminogen Activator in Mouse Sertoli Cells.

Mol Reprod Dev

January 2025

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.

A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.

View Article and Find Full Text PDF

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!