Applying Spike-density component analysis for high-accuracy auditory event-related potentials in children.

Clin Neurophysiol

Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy.

Published: August 2021

Objective: Overlapping neurophysiological signals are the main obstacle preventing from using cortical auditory event-related potentials (AEPs) in clinical settings. Children AEPs are particularly affected by this problem, as their cerebral cortex is still maturing. To overcome this problem, we applied a new version of Spike-density Component Analysis (SCA), an analysis method recently developed, to isolate with high accuracy the neural components of auditory responses of 8-year-old children.

Methods: Electroencephalography was used with 33 children to record AEPs to auditory stimuli varying in spectrotemporal features. Three different analysis approaches were adopted: the standard AEP analysis procedure, SCA with template-match (SCA-TM), and SCA with half-split average consistency (SCA-HSAC).

Results: SCA-HSAC most successfully allowed the extraction of AEPs for each child, revealing that the most consistent components were P1 and N2. An immature N1 component was also detected.

Conclusion: Superior accuracy in isolating neural components at the individual level was demonstrated for SCA-HSAC over other SCA approaches even for children AEPs.

Significance: Reliable methods of extraction of neurophysiological signals at the individual level are crucial for the application of cortical AEPs for routine diagnostic exams in clinical settings both in children and adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2021.05.007DOI Listing

Publication Analysis

Top Keywords

spike-density component
8
component analysis
8
auditory event-related
8
event-related potentials
8
neurophysiological signals
8
clinical settings
8
settings children
8
neural components
8
individual level
8
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!