The minute marine rotifer Proales similis is a potential model species for ecotoxicological and ecophysiological studies. Therefore, the provision of whole-genome data for P. similis is an easy way to deepen understanding of the molecular mechanisms involved in response to various environmental stressors. In this research, we assembled the whole-genome sequence (32.7 Mb total, N50 = 2.42 Mb) of P. similis, consisting of 15 contigs with 10,785 annotated genes. To understand the ligand-receptor signaling pathway in rotifers in response to environmental cues, we identified 401 G protein-coupled receptor (GPCR) genes in the P. similis genome and compared them with those from other species. The 401 full-length GPCR genes were classified into five distinct classes: A (363), B (18), C (7), F (2), and other (11). Most GPCR gene families have undergone sporadic evolutionary processes. However, some classes were highly conserved between species. Overall, this result provides new information about GPCR-based signaling pathways and the evolution of GPCRs in the minute rotifer P. similis, and it expands our knowledge of ligand-receptor signaling pathways in response to various environmental cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2021.100861 | DOI Listing |
Sci Rep
December 2024
Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
Background: Parasitic nematodes significantly undermine global human and animal health and productivity. Parasite control is reliant on anthelmintic administration however over-use of a limited number of drugs has resulted in escalating parasitic nematode resistance, threatening the sustainability of parasite control and underscoring an urgent need for the development of novel therapeutics. FMRFamide-like peptides (FLPs), the largest family of nematode neuropeptides, modulate nematode behaviours including those important for parasite survival, highlighting FLP receptors (FLP-GPCRs) as appealing putative novel anthelmintic targets.
View Article and Find Full Text PDFSpecialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.
View Article and Find Full Text PDFCell Genom
December 2024
Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes.
View Article and Find Full Text PDFNature
January 2025
Department of Genetics, Stanford University, Stanford, CA, USA.
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research. However, established technologies such as chimeric antigen receptors can only detect immobilized antigens, have limited output scope and lack built-in drug control. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!