Estimation of komatsuna freshness using visible and near-infrared spectroscopy based on the interpretation of NMR metabolomics analysis.

Food Chem

Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan. Electronic address:

Published: December 2021

The objective of this study was to explore the potentiality and mechanism of visible and near-infrared (Vis-NIR) spectroscopy in estimating the freshness of komatsuna. We monitored the cumulative CO production of komatsuna stored under different conditions as a freshness indicator and measured the Vis-NIR spectra of komatsuna as the predictor. Using the informative wavelengths (IW) selected using the stepwise selectivity ratio method, we constructed an accurate freshness prediction model through PLSR analysis. The IW in the visible region were attributed to pigments such as chlorophyll. In the NIR region, ten amino acids were identified as directly or indirectly contributing to the IW and were highly related to freshness. They were confirmed on the basis of the strong correlations between the informative NIR signals and NMR signals, which were determined using statistical heterospectroscopy. The results demonstrate the feasibility of Vis-NIR spectroscopy in estimating the freshness of komatsuna using the IW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130381DOI Listing

Publication Analysis

Top Keywords

visible near-infrared
8
vis-nir spectroscopy
8
spectroscopy estimating
8
estimating freshness
8
freshness komatsuna
8
freshness
6
estimation komatsuna
4
komatsuna freshness
4
freshness visible
4
near-infrared spectroscopy
4

Similar Publications

Non-optically active water quality parameters (NAWQPs) are essential for surface water quality assessments, although automated monitoring methods are time-consuming, include labor-intensive chemical pretreatment, and pose challenges for high spatiotemporal resolution monitoring. Advancements in spectroscopic techniques and machine learning may address these issues. We integrated ultraviolet-visible-near infrared absorption spectroscopy with physical-chemical measurements to predict total nitrogen (TN), dissolved oxygen (DO), and total phosphorus (TP) in the Yangtze River Basin, China.

View Article and Find Full Text PDF

For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.

View Article and Find Full Text PDF

We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.

View Article and Find Full Text PDF

The perceived colors of silicon-on-insulator (SOI) wafers with etched Si surface layers of thickness 90 nm to 30 nm vary from turquoise to purple to golden. Measured reflectance curves spanning ultraviolet, visible, and near infrared wavelengths have an amplitude modulated oscillatory pattern. Multilayer reflectance calculations indicate the oscillatory pattern results from the 2 µm thick buried SiO layer which functions as a nearly lossless reflective Fabry-Perot etalon in the near infrared where SiO and Si are transparent.

View Article and Find Full Text PDF

Photo-induced force microscopy (PiFM) uses laser modulation at the atomic force microscope cantilever's typical mechanical resonance frequency, to encode the material near-field response in the probes nanomechanics. While this technique offers the simplicity gained by mechanical detection, it can be challenging for hyperspectral measurements. Modulation in the visible and near-infrared ranges, often involves using acousto-optic modulators that introduce a wavelength-dependent laser steering, detrimental for spectroscopic purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!