With the development of sensing technologies and machine learning, techniques that can identify emotions and inner states of a human through physiological signals, known as electroencephalography (EEG), have been actively developed and applied to various domains, such as automobiles, robotics, healthcare, and customer-support services. Thus, the demand for acquiring and analyzing EEG signals in real-time is increasing. In this paper, we aimed to acquire a new EEG dataset based on the discrete emotion theory, termed as WeDea (Wireless-based eeg Data for emotion analysis), and propose a new combination for WeDea analysis. For the collected WeDea dataset, we used video clips as emotional stimulants that were selected by 15 volunteers. Consequently, WeDea is a multi-way dataset measured while 30 subjects are watching the selected 79 video clips under five different emotional states using a convenient portable headset device. Furthermore, we designed a framework for recognizing human emotional state using this new database. The practical results for different types of emotions have proven that WeDea is a promising resource for emotion analysis and can be applied to the field of neuroscience.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2021.3091187DOI Listing

Publication Analysis

Top Keywords

emotion analysis
8
video clips
8
clips emotional
8
wedea
6
wedea eeg-based
4
eeg-based framework
4
emotion
4
framework emotion
4
emotion recognition
4
recognition development
4

Similar Publications

Introduction: To target psychological support to cancer patients most in need of support, screening for psychological distress has been advocated and, in some settings, also implemented. Still, no prior studies have examined the appropriate 'dosage' and whether screening for distress before cancer treatment may be sufficient or if further screenings during treatment are necessary. We examined the development in symptom trajectories for breast cancer patients with low distress before surgery and explored potential risk factors for developing burdensome symptoms at a later point in time.

View Article and Find Full Text PDF

Background: Of the numerous complications encountered by people with diabetes (PWD), the effect on mental health is concerning. Within mental health, diabetes distress (DD) occurs when a patient has unfavourable emotional stress while managing their condition, which can be managed by coping strategies but are less studied together in Indian settings. So, the present study aimed to determine the proportion of DD and associated factors and coping skills among the PWD.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

The COVID-19 pandemic may have exacerbated mental health conditions by introducing and/or modifying stressors, particularly in university populations. We examined longitudinal patterns, time-varying predictors, and contemporaneous correlates of moderate-severe psychological distress (MS-PD) among college students. During 2020-2021, participants completed self-administered questionnaires quarterly (T1 = 562, T2 = 334, T3 = 221, and T4 = 169).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!