Here, we utilize electrochemical DNA devices to quantify and understand the cancer-specific DNA-damaging activity of an emerging drug in cellular lysates at femtomolar and attomolar concentrations. Isobutyl-deoxynyboquinone (IB-DNQ), a potent and tumor-selective NAD(P)H quinone oxidoreductase 1 (NQO1) bioactivatable drug, was prepared and biochemically verified in cancer cells highly expressing NQO1 (NQO1+) and knockdowns with low NQO1 expression (NQO1-) by Western blot, NQO1 activity analysis, survival assays, oxygen consumption rate, extracellular acidification rate, and peroxide production. Lysates from these cells and the IB-DNQ drug were then introduced to a chip system bearing an array of DNA-modified electrodes, and their DNA-damaging activity was quantified by changes in DNA-mediated electrochemistry arising from base-excision repair. Device-level controls of NQO1 activity and kinetic analysis were used to verify and further understand the IB-DNQ activity. A 380 aM IB-DNQ limit of detection and a 1.3 fM midpoint of damage were observed in NQO1+ lysates, both metrics 2 orders of magnitude lower than NQO1- lysates, indicating the high IB-DNQ potency and selectivity for NQO1+ cancers. The device-level damage midpoint concentration in NQO1+ lysates was over 8 orders of magnitude lower than cell survival benchmarks, likely due to poor IB-DNQ cellular uptake, demonstrating that these devices can identify promising drugs requiring improved cell permeability. Ultimately, these results indicate the noteworthy potency and selectivity of IB-DNQ and the high sensitivity and precision of electrochemical DNA devices to analyze agents/drugs involved in DNA-damaging chemotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645337PMC
http://dx.doi.org/10.1021/acssensors.1c00365DOI Listing

Publication Analysis

Top Keywords

electrochemical dna
12
dna devices
12
dna-damaging activity
8
nqo1 activity
8
nqo1+ lysates
8
orders magnitude
8
magnitude lower
8
potency selectivity
8
ib-dnq
7
activity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!