Tip estimation approach for concentric tube robots using 2D ultrasound images and kinematic model.

Med Biol Eng Comput

Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Published: August 2021

AI Article Synopsis

  • Concentric tube robots (CTR) are designed for minimally invasive surgery, offering high dexterity and compact size, but require accurate tip position tracking for safe operation.
  • The proposed method utilizes 2D ultrasound images along with a forward kinematic model to optimize the ultrasound scanning process, needing only three scan positions for each tube while reconstructing its shape.
  • The technique demonstrates a tip estimation accuracy of 0.59 mm and can be applied to existing robotic systems without structural modifications.

Article Abstract

Concentric tube robot (CTR) is an efficient approach for minimally invasive surgery (MIS) and diagnosis due to its small size and high dexterity. To manipulate the robot accurately and safely inside the human body, tip position and shape information need to be well measured. In this paper, we propose a tip estimation method based on 2D ultrasound images with the help of the forward kinematic model of CTR. The forward kinematic model can help to provide a fast ultrasound scanning path and narrow the region of interest in ultrasound images. For each tube, only three scan positions are needed by combining the kinematic model prediction as prior knowledge. After that, the curve fitting method is used for its shape reconstruction, while its tip position can be estimated based on the constraints of its structure and length.7 This method provides the advantage that only three scan positions are needed for estimating the tip of each telescoping section. Moreover, no structure modification is needed on the robot, which makes it an appropriate approach for existing flexible surgical robots. Experimental results verified the feasibility of the proposed method and the tip estimation error is 0.59 mm. Graphical abstract In this paper, we propose a tip estimation method based on 2D Ultrasound images with the help of the forward kinematic model of CTR. The forward kinematic model can help to provide a fast Ultrasound scanning path and narrow the region of interest in Ultrasound images. For each tube, only three scan positions are needed by combining the kinematic model prediction as prior knowledge. After that, the curve fitting method is used for its shape reconstruction, while its tip position can be estimated based on the constraints of its structure and length.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-021-02369-zDOI Listing

Publication Analysis

Top Keywords

kinematic model
28
ultrasound images
20
forward kinematic
16
three scan
12
scan positions
12
positions needed
12
concentric tube
8
paper propose
8
propose estimation
8
estimation method
8

Similar Publications

Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.

View Article and Find Full Text PDF

: The purpose of this study was to investigate dynamic responses of Lenke1B+ spines of adolescent scoliosis patients to different frequencies. : Modal analysis, harmonic response analysis and transient dynamics of a full spine model inverted by the finite element method using Abaqus. : The first-order axial resonance frequency of 4.

View Article and Find Full Text PDF

Biomechanical study of elbow joint: different stages after the elbow anterior capsule injury.

Acta Bioeng Biomech

September 2024

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.

: Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. : A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury.

View Article and Find Full Text PDF

In this study, the analysis of 2824 vulnerable road users (VRU) accident data from China's FASS (Future mobile traffic Accident Scenario Study) database indicates that VRU side impacts are the most common collision scenarios. A typical accident (minivan-toeBike) from the FASS database was selected for accident reconstruction. WordSID thorax module has been employed to evaluate e-Bike rider thorax injuries and its kinematic difference has been investigated as well.

View Article and Find Full Text PDF

The real rotational capacity of the human joints - the muscular and gravitational torques and the foot as a platform.

Acta Bioeng Biomech

September 2024

Jagiellonian University Medical College, Faculty of Medicine, Department of Bioinformatics and Telemedicine, Kraków, Poland.

The purpose was to answer what is the relationship between torques acting on the human body, how does the triceps calf muscle balance the weight of a tilted body and what is the foot's role in the titling body? Two research models were developed. Model 1 - the one-sided lever system consists of a flat bar with, an axis of rotation, used to determine the weight and torque at a given point on it. Model 2 - the two-sided lever system consists of a flat bar imitating a tilted body counteracted by the Achilles tendon, and a platform imitating a foot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!