Micropapillary carcinoma (MPC) is a morphologically distinctive form of carcinoma, composed of small nests of cancer cells surrounded by lacunar spaces. Invasive MPC is associated with poor prognosis. The nests of tumor cells in MPC reportedly exhibit reverse polarity, although the molecular mechanisms underlying MPC patterns are poorly understood. Using the cancer tissue-originated spheroid (CTOS) method, we previously reported polarity switching in colorectal cancer (CRC). When cultured in suspension, the apical membrane promptly switches from the outside surface of the CTOSs to the surface of the lumen inside the CTOSs under extracellular matrix (ECM)-embedded conditions, and vice versa. Here, we investigated two CTOS lines from CRC patient tumors with MPC lesions. Xenograft tumors from the CTOSs exhibited the MPC phenotype. The MPC-CTOSs did not switch polarity in vitro. Time-course analysis of polarity switching using real-time imaging of the apical membrane revealed that local switching was continually propagated in non-MPC-CTOSs, while MPC-CTOSs were unable to complete the process. Integrin β4 translocated to the outer membrane when embedded in ECM in both MPC and non-MPC-CTOSs. Protein levels, as well as the active form of RhoA, were higher in MPC-CTOSs. The suppression of RhoA activity by GAP overexpression enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, while overexpression of active RhoA did not affect polarity switching in non-MPC-CTOSs. Pretreatment with a ROCK inhibitor enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, although delayed treatment after becoming embedded in ECM failed to do so. Thus, the inability to switch polarity might be a cause of MPC, in which the aberrant activation of RhoA plays a critical role. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/path.5748 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Information Science and Technology, Fudan University, Shanghai 200433, China.
To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States.
Transition metal dichalcogenides (TMDs) with rhombohedral (3R) stacking order are excellent platforms to realize multiferroelectricity. In this work, we demonstrate the electrical switching of ferroelectric orders in bilayer, trilayer, and tetralayer 3R-MoS dual-gate devices by examining their reflection and photoluminescence (PL) responses under sweeping out-of-plane electric fields. We observe sharp shifts in excitonic spectra at different critical fields with pronounced hysteresis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!