Modulating interactions between immune effector cells and tumor cells in vivo using a bispecific aptamer (Ap) is a promising strategy for cancer immunotherapy. However, it remains a technical challenge owing to the complex and dynamic internal environment accompanied by severe degradation. Herein, by using a Y-shaped DNA scaffold, a bispecific and stabilized Y-type Ap is designed to redirect natural killer (NK) cells to enhance adoptive immunotherapy of hepatocellular carcinoma (HCC) solid tumors. Y-type Ap is constituted by the HCC-specific Ap TLS11a linked with the CD16-specific Ap through a Y-shaped DNA scaffold. Owing to the rigid structure, Y-type Ap shows high stability in 10% serum for over 72 h and resistance to denaturation by 8 M urea. Additionally, the Y-type Ap exhibits more potent avidity to bind with NK cells and tumor cells both in vitro and in vivo, resulting in higher cytokine secretion and excellent antitumor efficiency. Collectively, this study offers a translational platform for constructing stable bispecific Ap, offering considerable potential to enhance adoptive immunotherapy of solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr00836fDOI Listing

Publication Analysis

Top Keywords

adoptive immunotherapy
12
solid tumors
12
natural killer
8
killer cells
8
immunotherapy solid
8
stabilized y-type
8
bispecific aptamer
8
cells tumor
8
tumor cells
8
y-shaped dna
8

Similar Publications

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.

View Article and Find Full Text PDF

Herpesvirus Infections After Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies: A Review.

Viruses

January 2025

Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and idiopathic inflammatory myositis (IIM) are autoimmune diseases managed with long-term immunosuppressive therapies. Hu19-CD828Z, a fully human anti-CD19 chimeric antigen receptor (CAR) with a CD28 costimulatory domain, is engineered to potently deplete B-cells. In this study, we manufactured Hu19-CD828Z CAR T-cells from peripheral blood of SLE, IIM, and SSc patients and healthy donors (HDs).

View Article and Find Full Text PDF

Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!