Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction.

J Mater Chem B

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

Published: July 2021

Porous polymer microneedles (MNs) with interconnected structures demonstrate great potential in dermal interstitial fluid (ISF) extraction. However, the fluid extraction rate and the recovery of the extracted ISF by the porous MNs are limited by the poor hydrophilicity and the adhesion of porous MNs. Herein, we present a facile and mild polydopamine (PDA) and poly(ethylene glycol) (PEG) coating strategy for hydrophilic and anti-adhesive modification of porous polymer MNs from a phase inversion method. As a proof-of-concept, taking polysulfone (PSF) as an example, PDA and PEG-coated MNs (PSF@PDA@PEG) are fabricated through the self-polymerization of dopamine and PEG anchoring. Thanks to the hydrophilicity and anti-adhesion of PEG, the resulting PSF@PDA@PEG MNs demonstrate improved hydrophilicity, fast fluid extraction speed, and low target molecular adhesion. Besides, this method can be extended to hydrophobic polymers generally used in medical fields, including polylactic acid (PLA), polyvinylidene fluoride (PVDF), etc. This investigation provides a new road for MN-based off-line analysis in point-of-care testing (POCT).

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00873kDOI Listing

Publication Analysis

Top Keywords

porous polymer
12
fluid extraction
12
hydrophilic anti-adhesive
8
anti-adhesive modification
8
modification porous
8
polymer microneedles
8
dermal interstitial
8
interstitial fluid
8
porous mns
8
mns
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!