A new paddlewheel-type diruthenium complex with 2-amino-3-(trifluoromethyl)pyridine (amtfmp) [Ru2(amtfmp)4Cl2] ([1]), which shows intense and characteristic near-infrared (NIR) and visible absorption, has been developed and structurally characterized by single crystal X-ray diffraction (SCXRD) analyses. This complex exhibits reversible and dramatic NIR and visible electrochromic behavior from deep-blue ([1]) to pink ([1]-) due to the ON-OFF switching of its characteristic ligand-to-metal charge transfer (LMCT) and d-d absorption bands in response to an external voltage or chemical reagent such as decamethylcobaltocene (CoCp*2). The one-electron reduced species of [1], i.e., [CoCp*2][1], was successfully isolated and fully characterized via SCXRD, the temperature dependence of the magnetic susceptibility, and mass spectroscopy, proving that this electrochromic behavior occurs without significant structural reorganization of [1].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt01681d | DOI Listing |
Nanoscale
January 2025
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia.
Lead-free inorganic halide perovskites, specifically BaPX (X = Cl, F, I, Br) have gained attention in green photovoltaics due to their remarkable mechanical, optical, structural, and electronic properties. Using first-principles calculations, we investigated the mechanical, electronic, and optical characteristics of BaPX, revealing direct band gaps at the -symmetry point, assessed with the PBE and HSE functionals. The charge distribution analysis shows strong ionic bonding between Ba and halides and covalent bonding between P and halides.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.
CdS/ZnS heterostructures with tunable band gaps are promising photocatalysts for solar- or visible-light-driven H production through water splitting. To predict how the bandgap changes with the heterostructure composition, density functional theory calculations with meta-GGA correction are performed. It is found that the band gaps of CdS and ZnS are reduced by up to 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!