Electrophysiological and neuroimaging studies have demonstrated that large-scale brain networks are affected during the development of epilepsy. These networks can be investigated by using diffusion magnetic resonance imaging (dMRI). The most commonly used model to analyze dMRI is diffusion tensor imaging (DTI). However, DTI metrics are not specific to microstructure or pathology and the DTI model does not take into account crossing fibers, which may lead to erroneous results. To overcome these limitations, a more advanced model based on multi-shell multi-tissue constrained spherical deconvolution was used in this study to perform tractography with more precise fiber orientation estimates and to assess changes in intra-axonal volume by using fixel-based analysis. dMRI images were acquired before and at several time points after induction of status epilepticus in the intraperitoneal kainic acid (IPKA) rat model of temporal lobe epilepsy. Tractography was performed, and fixel metrics were calculated in several white matter tracts. The tractogram was analyzed by using the graph theory. Global degree, global and local efficiency were decreased in IPKA animals compared with controls during epileptogenesis. Nodal degree was decreased in the limbic system and default-mode network, mainly during early epileptogenesis. Further, fiber density (FD) and fiber-density-and-cross-section (FDC) were decreased in several white matter tracts. These results indicate a decrease in overall structural connectivity, integration, and segregation and decreased structural connectivity in the limbic system and default-mode network. Decreased FD and FDC point to a decrease in intra-axonal volume fraction during epileptogenesis, which may be related to neuronal degeneration and gliosis. Impact statement To the best of our knowledge, this is the first longitudinal multi-shell diffusion magnetic resonance imaging study that combines whole-brain tractography and fixel-based analysis to investigate changes in structural brain connectivity and white matter integrity during epileptogenesis in a rat model of temporal lobe epilepsy. Our findings present better insights into how the topology of the structural brain network changes during epileptogenesis and how these changes are related to white matter integrity. This could improve the understanding of the basic mechanisms of epilepsy and aid the rational development of imaging biomarkers and epilepsy therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/brain.2021.0026 | DOI Listing |
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFNeuroimage Rep
December 2024
Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA.
Background: Severe neonatal inflammatory conditions in very preterm infants (VPT: <32 weeks gestational age, GA) are linked to adverse neurodevelopmental outcomes. Differences in white matter (WM) microstructure of the corpus callosum (CC) have been observed at age 6 in VPT children with a history of severe neonatal inflammation. The goal of this study was to determine whether these CC differences can be detected at term-equivalent age using diffusion MRI (dMRI), and whether neonatal inflammation is associated with altered WM in additional tracts implicated in the encephalopathy of prematurity.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, Maryland, USA.
Introduction: The plasma proteome's mediating or moderating roles in the association between poor cardiovascular health (CVH) and brain white matter (WM) microstructural integrity are largely unknown.
Methods: Data from 3953 UK Biobank participants were used (40-70 years, 2006-2010), with a neuroimaging visit between 2014 and 2021. Poor CVH was determined using Life's Essential 8 (LE8) and reversing standardized z-scores (LE8 ).
Ann Neurol
January 2025
Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
Objective: After a recent small subcortical infarct (RSSI), some patients develop perilesional or remote hyperintensities ('caps/tracks') to the index infarct on T2/FLAIR MRI. However, their clinical relevance remains unclear. We investigated the clinicoradiological correlates of 'caps/tracks', and their impact on long-term outcomes following RSSI.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!