Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Supramolecular self-assemblies and co-assemblies possess multiple noncovalent interactions, highly ordered structures, and multifunctional properties. Yet, the fundamental understanding of their "structure-property relationship" remains very challenging. Herein, two kinetically controlled supramolecular charge transfer (CT) complexes were conceptualized from a trimorphic molecular donor denoted as "twisted aromatic hydrocarbon" (TAH), with -fluoranil (TFQ) and -chloranil (TCQ) in water, organic solvent, and solvent-free methods. Elucidating their co-assembling mechanism revealed that segmentation of the TAH with molecules having planar deficient cores spontaneously formed a distinct "H-type mixed stack" and "J-type segregated stack", regulated by blue/red-shifted charge-transfer and π-π stacking including weak C-H···F and C-H···O noncovalent interactions. By utilizing the structural transformational ability of the self-assembled TAH, the mechanistic aspects for the rapid nanoscopic co-assembly formation were precisely demonstrated experimentally and theoretically. The trimorphs and co-crystals of TAH could be disassembled resulting in turn-on emission by applying various external stimuli and being repeatedly reconfigured, thus providing a unique structure-property relationship and new TAH-based materials. This unique concept offers color-specific polymorphism and CT-complex formation strategy involving a simple class of functional materials having cooperative network forming ability using the twisted molecular donor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!