A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stimuli-Responsive Trimorphs and Charge-Transfer Complexes of a Twisted Molecular Donor. | LitMetric

Supramolecular self-assemblies and co-assemblies possess multiple noncovalent interactions, highly ordered structures, and multifunctional properties. Yet, the fundamental understanding of their "structure-property relationship" remains very challenging. Herein, two kinetically controlled supramolecular charge transfer (CT) complexes were conceptualized from a trimorphic molecular donor denoted as "twisted aromatic hydrocarbon" (TAH), with -fluoranil (TFQ) and -chloranil (TCQ) in water, organic solvent, and solvent-free methods. Elucidating their co-assembling mechanism revealed that segmentation of the TAH with molecules having planar deficient cores spontaneously formed a distinct "H-type mixed stack" and "J-type segregated stack", regulated by blue/red-shifted charge-transfer and π-π stacking including weak C-H···F and C-H···O noncovalent interactions. By utilizing the structural transformational ability of the self-assembled TAH, the mechanistic aspects for the rapid nanoscopic co-assembly formation were precisely demonstrated experimentally and theoretically. The trimorphs and co-crystals of TAH could be disassembled resulting in turn-on emission by applying various external stimuli and being repeatedly reconfigured, thus providing a unique structure-property relationship and new TAH-based materials. This unique concept offers color-specific polymorphism and CT-complex formation strategy involving a simple class of functional materials having cooperative network forming ability using the twisted molecular donor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c01172DOI Listing

Publication Analysis

Top Keywords

molecular donor
12
twisted molecular
8
noncovalent interactions
8
stimuli-responsive trimorphs
4
trimorphs charge-transfer
4
charge-transfer complexes
4
complexes twisted
4
donor supramolecular
4
supramolecular self-assemblies
4
self-assemblies co-assemblies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!